
Proceedings of the Doctoral
Symposium of Formal Methods
2015

Bernhard K. Aichernig and Alessandro Rossini (Eds.)
June 22, 2015

ISBN 978-82-7368-410-3
ISSN 0806-3036

Proceedings of the Doctoral Symposium of Formal Methods 2015

Bernhard K. Aichernig and Alessandro Rossini

Oslo, Norway, 22 June 2015

Proceedings of the Doctoral Symposium of Formal Methods 2015

Preface
This volume contains the research abstracts of the Doctoral Symposium which was held in Oslo on 22 June 2015 as part of
the 20th International Symposium on Formal Methods (FM 2015). The Doctoral Symposium provides a helpful environment
in which selected PhD students can present and discuss their ongoing work, meet other students working on similar topics,
and receive helpful advice and feedback from a panel of researchers and academics.

We received 12 submissions of which 10 were selected for presentation at the Doctoral Symposium. Each research
abstract was reviewed by at least three members of the Programme Committee. The emphasis of these reviews was on
providing useful feedback to the doctoral students, e.g., pointing them to related work.

The symposium invited Dr. Stijn de Gouw as keynote speaker, whose abstract of his talk Proving that Android’s, Java’s
and Python’s sorting algorithm is broken (and showing how to fix it) is included in this proceedings.

The panel of the Doctoral Symposium is formed of three members: Bernhard K. Aichernig (Graz University of Tech-
nology, Austria), Ana Cavalcanti (University of York, United Kingdom) and Cristina Seceleanu (Mälardalen University,
Sweden).

We would like to thank the authors of the submitted research abstracts, the members of the panel, Dr. Stijn de Gouw,
and the members of the Programme Committee for their valuable contributions. Special thanks are due to the excellent local
organisation by Einar Broch Johnsen and his team at the University of Oslo. Finally, we would like to thank all symposium
participants for making this event fruitful and worthwhile.

June 2015 Bernhard K. Aichernig
Alessandro Rossini

iii

Proceedings of the Doctoral Symposium of Formal Methods 2015

Programme Committee
• Bernhard K. Aichernig, Graz University of Technology, Austria (co-chair)

• Ana Cavalcanti, University of York, UK

• Juan De Lara, Universidad Autonoma de Madrid, Spain

• Zinovy Diskin, McMaster University and University of Waterloo, Canada

• Reiner Hähnle, Technical University of Darmstadt, Germany

• Peter Gorm Larsen, Aarhus University, Denmark

• Yang Liu, Nanyang Technological University, Singapore

• Shaoying Liu, Hosei University, Japan

• Cesar Munoz, NASA, USA

• Alessandro Rossini, SINTEF, Norway (co-chair)

• Augusto Sampaio, Federal University of Pernambuco, Brazil

• Cristina Seceleanu, Mälardalen University, Sweden

• Emil Sekerinski, McMaster University, Canada

• Graeme Smith, University of Queensland, Australia

• Meng Sun, Peking University, China

• Elena Troubitsyna, Aabo Akademi, Finland

• Margus Veanes, Microsoft Research, USA

• Uwe Wolter, University of Bergen, Norway

• Huibiao Zhu, East China Normal University, China

iv

Proceedings of the Doctoral Symposium of Formal Methods 2015

Symposium Programme

Session 1 1
1 Keynote: Proving that Android’s, Java’s and Python’s sorting algorithm is broken (and showing how to fix it)

Stijn de Gouw, SDL and CWI, Amsterdam, Netherlands

Session 2 3
3 Properties of Communicating Controllers for Safe Traffic Manoeuvres

Maike Schwammberger, University of Oldenburg, Germany
9 Real-time systems modelling with UML state machines and coloured Petri nets

Mohamed Mahdi Benmoussa, Université Paris 13, France
15 Test-Case Generation via Language Inclusion for Non-Deterministic Networks of Timed Automata

Florian Lorber, Graz University of Technology, Austria
21 Trace-length Independent Runtime Monitoring

Xiaoning Du, Nanyang Technological University, Singapore

Session 3 27
27 Inheritance and refinement of trustworthy component-based systems

José Dihego, Universidade Federal de Pernambuco, Brazil
33 Component-based CPS Verification: A Recipe for Reusability

Andreas Müller, Johannes Kepler University Linz, Austria
39 A Novel and Faithful Semantics for Feature Modeling

Aliakbar Safilian, McMaster University, Canada

Session 4 45
45 A Formal Model for the Safety-Critical Java Level 2 Paradigm

Matthew Luckcuck, University of York, United Kingdom
49 A Code Generator for VDM-RT models

Miran Hasanagic, Aarhus University, Denmark
55 Privacy-Preserving Social Networks

Raúl Pardo, Chalmers University of Technology, Sweden

Index of Authors 59

v

Proceedings of the Doctoral Symposium of Formal Methods 2015

vi

Proving that Android’s, Java’s and Python’s
sorting algorithm is broken
(and showing how to fix it)

Stijn de Gouw12

SDL, Amsterdam, Netherlands
CWI, Amsterdam, Netherlands

sgouw@sdl.com

Abstract Abstract. Some of the arguments often invoked against the
usage of formal software verification include the following: it is expensive,
it is not worthwhile (compared to its cost), it is less effective than bug
finding (e.g., by testing, static analysis, or model checking), it does not
work for “real” software. We evaluated these arguments by means of a
case study in formal verification.
Tim Peters developed the Timsort hybrid sorting algorithm in 2002.
It is a clever combination of ideas from merge sort and insertion sort,
and designed to perform well on real world data. TimSort was first
developed for Python, but later ported to Java (where it appears as
java.util.Collections.sort and java.util.Arrays.sort), by Joshua Bloch -
the designer of Java Collections who also pointed out that most bi- nary
search implementations were broken. TimSort is today used as the de-
fault sorting algorithm for Android SDK, Oracle’s JDK, OpenJDK, Py-
thon, Apache Hadoop and many other languages and frameworks. Given
the popularity of these platforms, the number of computers, cloud ser-
vices and mobile phones that use TimSort for sorting is well into the
billions.
Fast forward to 2015. After we had successfully verified Counting and
Radix sort implementations in Java (J. Autom. Reasoning 53(2), 129-
139) with a formal verification tool called KeY, we were looking for a new
challenge. TimSort seemed to be the ideal candidate for several reasons:
it is rather complex, widely used, had a bug history but was reported as
fixed in Java 8, and was extensively tested. Unfortunately, we were unable
to prove its correctness. A closer analysis showed that this was, quite
simply, because TimSort was broken and our theoretical considerations
finally led us to a path towards finding the bug (interestingly, that bug
appears already in the Python implementation). We show how we did it,
derive a mechanically verified bug-free version and discuss the reactions
of the developer communities involved in the implementation of the Java
and Python standard libraries.

Proceedings of the Doctoral Symposium of Formal Methods 2015

1

Proceedings of the Doctoral Symposium of Formal Methods 2015

2

Properties of Communicating Controllers for
Safe Traffic Manoeuvres

(Research Abstract) ?

Maike Schwammberger

Department of Computing Science, University of Oldenburg, Germany
schwammberger@informatik.uni-oldenburg.de

Abstract. This research abstract covers an approach of handling traffic
safety in urban traffic scenarios. A two-dimensional interval logic with
an underlying complex abstract model is briefly introduced as well as
a controller for crossing manoeuvres which uses this logic. As this con-
troller, as well as another controller for traffic manoeuvres for country
roads from related work, is based on an idealisation of real-world sensors,
the authors first research goal is to extend these controllers to a more
realistic approach. The authors main research goal is to examine safety,
liveness and fairness properties for these controllers.
Keywords. Multi-dimensional spatial logic, urban traffic, autonomous
cars, collision freedom, extended timed automata.

Traffic safety is a relevant topic as driving assistant systems and anytime soon
fully autonomously driving cars are increasingly capturing the market. Hilscher
et al. introduced an abstract model for proving traffic safety on freeways [1]
and country roads [2]. To that end, the authors introduced the two-dimensional
interval logic [3] Multi-lane spatial logic (MLSL) capable of describing traffic
situations. Furthermore they presented an informal concept for lane-change con-
trollers for freeways and country roads.

Martin Hilscher and myself recently extended this abstract model and the
logic MLSL to a complex model with intersections for urban traffic scenarios
with an underlying graph topology [4]. We introduce semantics of an extension
of timed automata [5] to formally substantiate the controllers in [1] and [2].
Furthermore we were able to construct a controller for crossing manoeuvres by
adapting the lane change controller from [2] for our purposes. As my current and
future work is based on it, I briefly outline some topics of this recent work in the
following passages.

Several lines of research exist on traffic safety for autonomously driving
cars in different traffic scenarios. For example, successful approaches for au-
tomated highway systems with car platoons were presented by the California
PATH project [6] and the European Project SARTRE [7]. Another example is

? This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

Proceedings of the Doctoral Symposium of Formal Methods 2015

3

the DARPA Urban Challenge 2007 finalist AnnyWAY [8] whose safe algorithm
handles moving traffic in urban traffic scenarios.

Among others, an approach to model traffic flow in urban or multi-lane traf-
fic scenarios are traffic cellular automata, where macroscopic behaviour is repro-
duced by a minimal description of microscopic interactions [9]. Another research
topic with versatile applications are intelligent transportation systems, ranging
from car navigation systems to complex traffic management and advanced public
transportation systems [10].

Recent Work. Our meaning of traffic safety is collision freedom. For every car
we consider a safety envelope to express the space it occupies on the road. This
envelope subsumes the cars physical size and braking distance for emergency
brakes. We furthermore include the whole width of the lane the car drives on
in the safety envelope, to allow a car to slightly move lateral within its lane.
With these assumptions, collision freedom means that the safety envelopes of
all cars are disjoint at any point in time. In the following passages we assume
an idealisation of real-world sensors we call perfect knowledge, where every car
perceives the whole safety envelope of every other car.

The main idea of our approach is to use purely spatial reasoning, detached
from the underlying car dynamics, to prove safety of our controller. Our high-
level controllers define a protocol for complex lane change and crossing manoeu-
vres. A suitable hybrid automaton [11] like controller on a lower dynamical level
only needs to manage that the car drives in its safety envelope with the correct
speed. An example for an approach to fulfil the task on the dynamical level are
the velocity and the steering controller in [12]. Title Suppressed Due to Excessive Length 3

0

F

1

2

3
C

D

D

4

C

5

B

6 A
B

7 E c0 c1

c2
Cc3

B

V (E)

r3

r2

r1

r0

Fig. 1. The view V (E) of car E covers the intersection and a bounded extension
of lanes 6, 7 and 4, 5. In this view, car E sees car A driving on lane 6 and cars
B and C which are currently both turning right at the intersection. Car E does
not perceive car F and neither the claim nor the reservation of D.

straight virtual lane. For example in the view V (E) of E depicted in Fig. 1 the
formula

� ⌘
≠

free a re(B) a cs ^ re(B) a re(B)
re(E) a free a cs ^ free a cs ^ re(C) a re(C)

∑

holds, with a being the horizontal chop operator, comparable to it’s equivalent
in interval temporal logic, to distinguish adjacent segments in a lane. Further
on, two Urban Multi-Lane Spatial Logic formulas one above the other is the
vertical chop operator. We distinguish between a reserved (re(E)) and a claimed
(cl(E)) space on a lane or crossing segment, where a claim is comparable with
setting the direction indicator. We stipulate, that reserved and claimed spaces
have the extension of the safety envelopes of the cars, which include a car’s
braking distance and assume that every car perceives the safety envelope of all
other cars in it’s standard view.

We need to distinguish between the movement of cars on lanes and on crossing
segments. We allow for two-way tra�c on lanes of continuous length, assuming
every lane has one direction, but cars may temporarily drive in the opposite
direction to perform an overtaking manoeuvre. As a car’s direction will change
while turning on an intersection, two directions would not be su�cient for a
crossing segment, wherefore we consider them as discrete elements without a
direction.

When a car is about to drive onto such a discret crossing segment and time
elapses, the car’s safety envelope will stretch to the whole crossing segment, while
disappearing continuously on the lane it drove on. An example for this behaviour
are cars B and C in Fig. 1, where B leaves lane 5 and enters lane 6 continuously,
while it occupies the whole discret crossing segment c3.

Fig. 1. View V (E) of car E covers the intersec-
tion and a finite parts of lanes 6, 7 and 4, 5.

Our abstract model (see
Fig. 1) is focused on mod-
elling traffic situations at in-
tersections and contains an
arbitrary but finite number
of discrete crossing segments
(c0, . . . , cn) and continuous
lanes (1, . . . , n). We assume
every lane to have one driv-
ing direction, but cars might
temporarily drive in the op-
posite direction to perform
an overtaking manoeuvre.
Every car has a unique iden-
tifier (A,B,C, . . .) and a real
value for its position pos.

We consider only local parts of the abstract model, where a car E has its own
view V (E). We distinguish between a reserved (re(E)) and a claimed (cl(E))
space on a lane or crossing segment, where a reservation is the space the car is
driving on and a claim is comparable to setting a direction indicator.

Proceedings of the Doctoral Symposium of Formal Methods 2015

4

If a car intends to turn left or right at an intersection, the view of a car is
no longer straight (cf. view V (E) in Fig. 1). Hence, we just unfold the view to a
straight virtual lane (cf. Fig. 2). A virtual lane only includes those parts of safety
envelopes, which are visible within the view under consideration. Concerning Fig.
1, this implies that the part of car C on lane 3 is not contained in the virtual
lane in Fig. 2, because it is not part of V (E).

6 A B B B

7 E 4

5

c0 c1 c2
C

C

c3

V (E)

Fig. 2. Virtual lane for view V (E).

The benefit of unfolding views
to virtual lanes is, that on
straight lanes we are able to
express formulas of our spatial
Urban Multi-Lane Spatial Logic
(UMLSL) which is an extension of
previously mentioned MLSL.

In view V (E) depicted in Fig. 1 the UMLSL formula 〈φ〉 ≡ 〈re(E) a free a
re(C)〉 holds. Here a is a horizontal chop operator comparable to its equivalent
in interval temporal logic, that separates adjacent elements in an interval. Fur-
thermore, free describes free space on a lane or crossing segment and 〈φ〉 means
that φ holds somewhere in the view.

0 1

2

3

45

6

7 c0 c1

c2c3

Fig. 3. Road network for Fig. 1.

The topology of our abstract model is given
by an urban road network (see Fig. 3) where
we can express the way a car travels by a path
assigned to every car. In these networks, inter-
sections are given by strongly connected com-
ponents of crossing segments that are adjacent
to each other (here: c0, c1, c2 and c3).

To actually perform traffic manoeuvres on
intersections, we define a crossing controller,
which is shown in Fig. 4. This controller is an
extended timed automaton, where the exten-
sions involve UMLSL formulas as guards and invariants, data variables for cars
and lanes and controller actions to reserve or claim space on crossing segments.
We use the special constant ego, to indicate the car E under consideration that
owns the view.

The controller action cc(ego) is used to declare a claim for crossing segments
and rc(ego) to reserve previously claimed crossing segments. For an arbitrary
car E crossing segments are claimed, resp. reserved, according to its path. The
actions wd cc(ego) and wd rc(ego) are used to withdraw a claim or reservation
for a crossing segment, e.g. when the crossing manoeuvre is finished.

To roughly understand this controllers’ behaviour, consider for example state
q2: In this state, some crossing segments are already claimed for the car E,
according to its path. Instead of the intuitive idea that a claim for lane change
manoeuvres can be compared to setting the turn signal, a claim for crossing
segments can be understood as an announcement of car E, that it intends to
reserve the claimed crossing segments at a later point in time.

Proceedings of the Doctoral Symposium of Formal Methods 2015

5

q0 : cc(ego) q1 : ca(ego) q2 : ca(ego)

q3 :
ca(ego)

∧¬∃c : pc(c)
∧x ≤ tc

q4 :
x ≤ tcr
∧oc(ego)

ca(ego)
cc(ego)

∃c : pc(c)/wd cc(ego)

¬∃c : pc(c)
/x := 0

x ≥ tc
∨∃c : pc(c)
/wd cc(ego)

¬∃c : pc(c) ∧ ¬lc(ego)
/rc(ego);x := 0

wd rc(ego)

Fig. 4. Crossing controller Acc

While in state q2 the controller examines if a potential collision occurs, by
checking if the claim of E intersects with either the claim or reservation of any
other car. This is expressed by the formula ∃c : pc(c) ≡ ∃c : c 6= ego∧〈cl(ego)∧
(re(c)∨ cl(c))〉. If such a potential collision exists, the controller changes back to
state q1 and withdraws its previous claim with the controller action wd cc(ego).
If no potential collision is detected, the controller passes over to state q3 and
might finally be able to reserve his claim and cross the intersection.

Future Work. For both country roads [2] and our recent approach to urban
traffic manoeuvres [4] only a concept of perfect knowledge was considered, where
every car perceives the full safety envelope (comprising the physical size and
braking distance) of every other car. I plan to extend this work by considering
a more realistic model, where a car’s sensors only perceive the physical size of
other cars but not their braking distance.

To construct safe controllers in this case, I intend to take the knowledge of
other cars into account to increase the range of information on traffic situations
available to the car under consideration. To that end, cars need to communicate
with each other to prevent collisions, which I will implement by extending the
existing controllers by a concept of communication with broadcast channels.

Another interesting, and up to now unconsidered, point, is to examine liveness
properties of the existing controllers. Do we have a guarantee that on freeways
[1] and country roads [2] a car that intends to change a lane will be able to do so
finally? For urban traffic scenarios one could even widen the idea of liveness to
fairness properties to ensure that the time a car waits in front of an intersection
does not exceed a certain upper bound.

To express such liveness and fairness properties, I first need to extend the
logic MLSL with some time constraints of metric temporal logic [13]. To prove
liveness, one could use a tool-driven approach to test reachability of specific de-
sirable states (cf. UPPAAL [14]). In case of the crossing controller for perfect
knowledge depicted in Fig. 4, a desirable state would be q4 because the abbrevi-
ation oc(ego) ≡ 〈re(ego)∧ cs〉 states that the car drives on a crossing segment.

Proceedings of the Doctoral Symposium of Formal Methods 2015

6

Fairness could be reached by implementing a decentralised scheduling system
which grants access to crossing segments according to the crossing priority of a
car. This priority could increase the longer a car is forced to wait in front of an
intersection.

The overall goal of my approach is to adjust the controller for freeways and
design new communicating controllers for country roads and crossing manoeu-
vres, all three without perfect knowledge, that are safe, live and fair.

References

1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In Qin, S., Qiu, Z., eds.: Int’l Conf. on
Formal Engineering Methods (ICFEM). Volume 6991 of LNCS., Springer-Verlag
(2011)

2. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In Liu, Z., Woodcock, J., Zhu, H., eds.: Theories of Programming
and Formal Methods. Volume 8051 of LNCS. Springer (2013) 196–212

3. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18 (1985) 10–19

4. Hilscher, M., Schwammberger, M.: Extending an abstract model for proving safety
of motorway manoeuvres to urban traffic scenarios. Manuscript (2015)

5. Alur, R., Dill, D.: A theory of timed automata. TCS 126 (1994) 183 – 2350
6. Lygeros, J., Godbole, D., Sastry, S.: Verified hybrid controllers for automated

vehicles. IEEE Transactions on Automatic Control 43 (1998) 522–539
7. Chan, E. et al.: SAfe Road TRains for the Environment (SARTRE): Project final

report. Technical report, SARTRE collaborative project (2012)
8. Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling

moving traffic in urban scenarios. In: Proc. IEEE Intelligent Vehicles Symposium,
Eindhoven, The Netherlands (2008) 168–173

9. Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Physics
Reports 419 (2005) 1–64

10. Figueiredo, L., Jesus, I., Machado, J., Ferreira, J., de Carvalho, J.M.: Towards the
development of intelligent transportation systems. In: Intelligent Transportation
Systems. Volume 88. (2001) 1206–1211

11. Henzinger, T.A.: The theory of hybrid automata, IEEE Computer Society Press
(1996) 278–292

12. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems:
a case study on concurrency and coupling. In: 17th International Conference on
Hybrid Systems: Computation and Control (HSCC’14), Berlin. (2014) 145–150

13. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2 (1990) 255–299

14. Behrmann, G., David, A., Larsen, K.: A tutorial on uppaal. In Bernardo, M.,
Corradini, F., eds.: Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems, SFM-RT 2004, Springer–Verlag (2004) 200–236

Proceedings of the Doctoral Symposium of Formal Methods 2015

7

Proceedings of the Doctoral Symposium of Formal Methods 2015

8

Real-time systems modelling with UML state
machines and coloured Petri nets

Mohamed Mahdi Benmoussa

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France
mahdi.benmoussa@lipn.univ-paris13.fr

Abstract. In this Ph.D. work we deal with the modelling of real-time
systems. In a first part, we propose a new method to model UML state
machines starting from a text description of real-time systems. In a sec-
ond part, we propose a set of constructs to express time constraints
and annotate the UML state machine model. Since UML does not have
an official formally described semantics (a standard semantics approved
by OMG), we intend to translate UML state machines with time into
(timed) coloured Petri nets. Finally we will implement our algorithms
with an automated support to have an automatic translation. As a
longer-term work, we would like to prove the correctness of our algo-
rithms by proving an equivalence between the source UML state machine
model (e.g. using an operational semantics) and the resulting (timed)
coloured Petri net model.

1 The Problem Addressed and its Relevance

To ensure the safety and the correctness of real-time systems, it is necessary to
use formal methods. One way is to model systems using a modelling language and
then apply formal verification methods. UML is one of the most used modelling
languages for its large number of constructs and the diversity of its diagrams, e.g.
UML state machine diagrams. UML state machine diagrams are quite expressive
and allow the modelling of dynamic behaviours with a rich graphical represen-
tation. However, UML does not have an official formally described semantics
and the set of syntactic elements to represent time constraints is limited. We
propose in this Ph.D. work a new way to specify real-time systems using UML
state machines. The result of the specification (the UML state machine model)
will be translated into coloured Petri nets. We chose coloured Petri nets because
they are a very expressive graphical language with a formal semantics and they
allow to perform simulation (using for example CPN Tools [19]).

2 Related Works

Many formalisms have been proposed to handle real-time systems. An approach
is the use of UML statecharts [11] to model systems and propose a semantics
or a translation to a formal model. The approach proposed in [10] provides a

Proceedings of the Doctoral Symposium of Formal Methods 2015

9

translation from statecharts (with time extension) to extended hierarchical timed
automata. The first part of this approach consists in extending the statecharts
model with time to support the modelling of real-time systems. The second part
consists in proposing an extended hierarchical timed automaton. However, some
syntactic elements taken into account in UML state machines are not available
in statecharts [9].

Another approach is an extension for UML called MARTE (Modeling and
Analysis of Real-Time and Embedded Systems) to take into account time re-
quirements with a rich syntax. In [3,1] C. André et al. present the time subprofile
of MARTE (an OMG UML profile) and the different types of time constraints
that this profile allows to express. To verify the properties of time constraints,
this approach uses a formal specification language, CCSL (Clock Constraint
Specification Language) [17], that is a language to specify clock constraints ([18]
proposes a transformation from MARTE/CCSL to Timed Automata for verifi-
cation). However, we think that due to the richness of the language it is difficult
to analyse constraints.

Another approach is to use UML collaborations for time annotations together
with UML state machines. Knapp et al. [13] present a tool (HUGO/RT) to ver-
ify automatically timed UML state machines models. This tool takes as input
UML state machines time-annotated by UML collaborations. The timed state
machines are compiled into timed automata that exchange signals and opera-
tions via a network automaton. However, the approach has some limitations: the
expressiveness of time using UML collaborations is limited, and it is necessary
to optimize the number of clocks.

Another way to handle real-time systems is to use patterns based on time
constraints (e.g. [16,2]). Mekki et al. [16] use patterns observers of UML state
machines to represent temporal requirements, and then translate them into timed
automata. The problem of this approach is that the set of time properties taken
into account does not allow to describe all kinds of systems. É. André [2] defines
a set of correctness patterns encoding common properties that are translated to
timed automata/CSP, and their verification reduces to reachability problems.
The problem of this approach is the limited number of patterns used to express
the time properties.

Shartz et al. [14] propose a framework to analyse UML statechart diagram.
The framework analyses Petri net models converted from UML statechart dia-
grams using the transformation proposed in [12]. The proposed transformation
takes into account: simple/composite and orthogonal states, local and external
transitions, shallow history pseudo-states, final state, initial pseudo-states, etc.
However, the transformation does not consider fork and join pseudo-states, be-
haviours (entry/exit/do behaviours), variables, guard and action on transitions.

Finally, É. André et al. [7] propose a translation from UML state machines to
coloured Petri nets. This approach support a set of syntactic elements of UML
state machines such as hierarchy, composition, etc. However this approach does
not consider concurrency and time constraints.

Proceedings of the Doctoral Symposium of Formal Methods 2015

10

3 Solution Scheme and Expected Contributions

The work of my Ph.D. is divided into two parts: the first one concerns the
modelling of real-time systems; the second one concerns the translation to a
formal model for verification. These two parts are divided into five contributions:

Contribution 1 is to propose syntactic constructs to express time con-
straints together with a semantics. The aim of those constructs is to provide
a simple way to represent and analyse time. It will allow designers using the
method of contribution 2 to express in better way their systems.

Contribution 2 is to propose a new method to guide and assist designers
for the specification of real-time systems using UML state machines with time
(we will use our time constructs to annotate UML state machine model). Our
work is inspired by work done in [8]. Starting from a textual description of the
system we can apply our specification method to generate the corresponding
UML state machine model. The advantage of this approach is both a structured
method to model systems but also to avoid as much as possible errors in the
modelling phase.

Contribution 3 is to define a new translation from UML state machines to
coloured Petri nets with time.

Contribution 4 is the implementation of an automated support to auto-
mate the translation of UML state machines with time into timed coloured Petri
nets. The tool will allow us to apply the translation on a large set of examples
and case studies (gathered from the literature). We will use the result of the
translation to apply formal verification methods to prove the system properties.

Contribution 5 is to prove the equivalence between the original UML state
machine model and the resulting coloured Petri nets for the validation of the
translation. There is no formally described semantics for UML state machines
defined by the OMG. However, [15] defines an operational semantics for most
syntactical constructs of UML state machines; based on an extension of this
semantics to time (that remains to be done), we could prove the equivalence
between the two formalisms (UML state machines and coloured Petri nets).

4 Work Progression

My thesis began in October 2013 and is expected to end in September 2016.
Contribution 1 : we have handled a set of case studies of real-time systems

and we have proposed constructs (such as: concurrency, delay, sequence, prece-
dence. . .) to express time constraints and take into account (in simple way) the
most common time requirements in real-time systems. Our constructs take into
account some cases not considered by the other works (e.g. the use of time in
states). We are working on the expression of those constructs by defining a new
syntax together with a semantics based on a defined grammar. This syntax will
allow us to annotate UML state machine with time and be able to model real-
time systems. We aim at validating our constructs by modelling a large set of
real-time systems.

Proceedings of the Doctoral Symposium of Formal Methods 2015

11

Contribution 2 : we extended the work done in [8] by improving the dif-
ferent steps of the specification method. We applied the method on examples
to handle different systems (without time) and to improve its different steps.
The application of the method on different case studies of real-time systems will
allow us to propose a new method that handles with real-time systems.

Contribution 3 : we started by improving the work done in [7] and propose
new algorithms to take into account more syntactic elements (e.g. concurrency)
in the translation of UML state machines into coloured Petri nets. This improved
translation covers a large set of case studies (this work was published in [5,4]).
The next step will be the proposal of a translation from UML state machines
with time into timed coloured Petri nets.

Contribution 4 : we implemented in [6] the translation of [7] using a model-
to-text tool (Acceleo1, based on the approach that takes as input the source
model/meta-model and generates the corresponding target model). Due to the
absence of the coloured Petri nets meta-model, we were not able to use model-to-
model tools (based on the approach that takes as input the source model/meta-
model and the target meta-model to generate the corresponding target model).
We generate with Acceleo an XMI file that corresponds to the syntax used in
CPN tools. This experience shows that Acceleo has a limited syntax to imple-
ment our algorithms. Consequently we are working on the implementation of
our automated support. We will finish the implementation of the tool to support
the two translations (without and with time).

Contribution 5 : to be done.

References

1. André, C., Mallet, F., Peraldi-Frati, M.A.: A multiform time approach to real-
time system modeling; application to an automotive system. In: IEEE Second
Int. Symposium on Industrial Embedded Systems. pp. 234–241. IEEE Computer
Society (2007)

2. André, É.: Observer patterns for real-time systems. In: Proc. 18th IEEE Int. Conf.
on Engineering of Complex Computer Systems. pp. 125–134. IEEE Computer So-
ciety (2013)

3. André, C., Mallet, F., De Simone, R.: Time Modeling in MARTE. In: Forum on
specification & Design Languages (FDL’07). pp. 268–273. ECSI (2007)

4. André, É., Benmoussa, M.M., Choppy, C.: Formalisation des diagrammes états-
transitions UML concurrents. In: Actes de la session posters du 9e Colloque sur la
Modélisation des Systèmes Réactifs (MSR’13) (2013)

5. André, É., Benmoussa, M.M., Choppy, C.: Formalising concurrent UML state ma-
chines using coloured Petri nets. In: Proc. of the 6th Int. Conf. on Knowledge and
Systems Engineering (KSE’14). Advances in Intelligent Systems and Computing,
vol. 326, pp. 473–486. Springer (2014)

6. André, É., Benmoussa, M.M., Choppy, C.: Translating UML state machines to
coloured Petri nets using Acceleo: A report. In: 3rd Int. Workshop on Engineering
Safety and Security Systems (ESSS’14). pp. 1–7. EPTCS 150 (2014)

1 https://www.eclipse.org/acceleo/

Proceedings of the Doctoral Symposium of Formal Methods 2015

12

7. André, É., Choppy, C., Klai, K.: Formalizing non-concurrent UML state machines
using colored Petri nets. ACM SIGSOFT Software Engineering Notes 37(4), 1–8
(2012)

8. Choppy, C., Reggio, G.: A method for developing UML state machines. In: Proc.
of ACM Symposium on Applied Computing (SAC’09). pp. 382–388 (2009)

9. Crane, M.L., Dingel, J.: UML vs. classical vs. Rhapsody statecharts: not all models
are created equal. Software and System Modeling 6, 415–435 (2007)

10. Giese, H., Burmester, S.: Real-time statechart semantics. Tech. rep., Lehrstuhl für
Softwaretechnik, Universität Paderborn (2003)

11. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

12. Hu, Z., Shatz, S.M.: Explicit modeling of semantics associated with composite
states in UML statecharts. Autom. Softw. Eng. 13(4), 423–467 (2006)

13. Knapp, A., Merz, S., Rauh, C.: Model checking - timed UML state machines and
collaborations. In: Proc. of the 7th Int. Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’02). LNCS, vol. 2469, pp. 395–416.
Springer (2002)

14. Lian, J., Hu, Z., Shatz, S.M.: Simulation-based analysis of UML statechart dia-
grams: methods and case studies. Software Quality Journal 16(1), 45–78 (2008)

15. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal
semantics for the complete syntax of UML state machines with communications.
In: Proc. 10th Int. Conf. on Integrated Formal Methods (iFM’13). LNCS, vol. 7940,
pp. 331–346. Springer (2013)

16. Mekki, A., Ghazel, M., Toguyéni, A.: Timed specification patterns for system vali-
dation: A railway case study. In: Proceedings of Informatics in Control, Automation
and Robotics (ICINCO’11). vol. 89, pp. 121–134 (2011)

17. Peters, J., Wille, R., Drechsler, R.: Generating systemC implementations for clock
constraints specified in UML/MARTE CCSL. In: Proc. Int. Conf. on Engineering of
Complex Computer Systems (ICECCS’14). pp. 116–125. IEEE Computer Society
(2014)

18. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Software Engineering and Formal Methods.
LNCS, vol. 8137, pp. 1–15. Springer (2013)

19. Westergaard, M.: CPN Tools 4: Multi-formalism and extensibility. In: Petri Nets.
LNCS, vol. 7927, pp. 400–409. Springer (2013)

Proceedings of the Doctoral Symposium of Formal Methods 2015

13

Proceedings of the Doctoral Symposium of Formal Methods 2015

14

Test-Case Generation via Language Inclusion for
Non-Deterministic Networks of Timed Automata

Florian Lorber

Institute for Software Technology
Graz University of Technology, Austria

florber@ist.tugraz.at

Abstract. In this report we present the core part of a PhD thesis fo-
cusing on model-based testing of real-time systems. The presented part
centers on timed automata and gives a brief overview on fault-based
test case generation, determiniziation of bounded timed automata and
planned optimizations to both topics.

Keywords: timed automata · real-time systems · model-based mutation
testing · bounded determinization of timed automata

1 Introduction

A lot of systems nowadays, especially in safety-critical areas, have to comply to
very strict real-time requirements. Consequently, formal models used for verifi-
cation of such systems need to capture these timing aspects and thus become
increasingly complex. In the presented thesis we focus on timed automata [4],
one of the most wide-spread formalisms for specifying real-time systems.

Specification models often leave some freedom to the implementation, and
thus contain non-determinism, where the implementation may choose between
the different paths. However, timed automata with non-determinism are strictly
more expressive than deterministic ones, and some importants problems, as e.g.
language inclusion, become undecidable for non-deterministic timed automata.

In the presented thesis, we investigate timed automata in the context of
model-based testing. In the first year of the doctoral school we already developed,
implemented and published an algorithm for fault-based test case generation
from deterministic timed automata using language inclusion.

In the second year we investigated removing silent transitions and determiniz-
ing timed automata, by restricting ourselves to the bounded case. An according
algorithm and its implementation are already developed, but not yet published.

In the last year of the thesis we will investigate networks of timed automata,
where the internal communications become hidden and thus are removed. We
will also investigate ways to tackle efficiency problems, as for instance the state-
space explosion caused by the unfolding of the automata and we will evaluate
our approach on several industrial case studies.

Proceedings of the Doctoral Symposium of Formal Methods 2015

15

2 Related Work

Timed automata were introduced in the 1990s by Alur and Dill [4], and have
since received a lot of attention, both on their theoretical and their practical
aspects. A recent survey by Waez et al. [15] lists forty different tools that use
timed automata in the context of code development and verification. The survey
identifies eleven classes of timed automata and almost eighty concrete variants
belonging to those classes.

Already Alur and Dill [4] showed that non-deterministic timed automata
are more expressive than deterministic ones. Bérard et al. [6] showed that timed
automata with silent transitions are even more expressive. Some classes of de-
terminizable timed automata were identified by Baier et al.[5]. They also unfold
the non-deterministic automaton into a tree, using one clock for each depth.
Contrary to our work, they use an infinite tree and focus on those classes of
timed automata that can be determinized, while we cut the tree, to be able to
determinize all timed automata bounded to finite traces. Bérard et al. [6] showed
that silent transitions without clock resets can be removed without changing the
language of a timed automaton. They also show how to remove silent transitions
with clock resets, if the silent transitions do not lie on directed cycles. Our al-
gorithm can handle silent transitions with and without clock resets, as long as
there are no directed silent cycles with clock resets.

Model-based test case generation from timed automata has been done in
several approaches. Nielsen and Skou [13] proposed a test case generation frame-
work for non-deterministic (but determinizable) timed automata. The tool UP-
PAAL Tron [12] performs online testing from timed automata. This approach
allows non-determinism and is very adaptive, as the system under test and the
model are simulated simultaneously. UPPAAL CoVer [9] is a tool from the same
family, which allows the coverage based generation of test cases, according to
user-defined observers. Wang et al. [16] performed language inclusion between
timed automata via an on the fly determinization. They use infinite trees and
thus only terminate for determinizable automata.

Model-based test case generation for real-time systems has been performed
with various models other than timed automata. Some have been summarized
by Nilsson [14], where he separates the methods into methods based on Pro-
cess Algebra, Finite State Machines, Temporal Logic, Petri Nets and Informal
Methods.

3 Fault-based Test Case Generation of Timed Automata

Model-based mutation testing is a combination of model-based test case genera-
tion and mutation testing. It takes a specification model and alters it according
to a set of predefined fault models, called mutation operators. This creates a set
of altered, possibly faulty, models called mutants. The mutants can be checked
for conformance to the original model. If a mutant conforms, the mutation did

Proceedings of the Doctoral Symposium of Formal Methods 2015

16

not introduce a fault. However, if the conformance was violated, the check re-
turns a trace indicating where the behavior of the mutant violated the speci-
fication. This trace can be converted into a test case which can test whether
an implementation behaves like the correct specification or like the mutant. We
adopted this approach to timed automata [3]: we defined eight mutation oper-
ators, modeling general and timing faults, developed an algorithm for a tioco-
conformance [10] check via language inclusion and implemented the procedure
using the SMT-solver Z3 [8]. The implementation is called MoMuT::TA and
is part of the MoMuT toolchain1. A release of MuMuT::TA is planned within
the next few months. The generated test cases are either the concrete timed
traces returned from the SMT-solver or partial models from the specification,
containing all locations and transitions that are visited along the trace. The test
driver uses these partial models to choose the next inputs and assign pass, fail
and inconclusive verdicts. The approach is limited to deterministic automata, as
non-determinism might lead to spurious counter examples during the language
inclusion. This approach was also only intended for single timed automata. One
of the co-authors of the paper later extended the approach to networks of de-
terministic timed automata [7], by applying the language inclusion check to one
single automaton, and then extending the produced test case according to the
remaining automata of the network. We also adopted the approach to debug-
ging [1], where we select minimal sets of model-mutants that show the same
behavior as a faulty implementation.

4 Determinization of Timed Automata

The limitation of our testing approach to deterministic systems made it inap-
plicable for many industrial case studies. This problem was hard to overcome,
as in general, timed automata can not be determinized [4]. We tackled this by
bounding the length of the traces in the automaton, and thus retrieving a tree-
shaped determinizable class of timed automata. In the context of testing we are
interested in finite traces to reveal faults, thus the bound does not restrict us.
The whole approach covers both, the removal of silent transitions and the deter-
minization of the automaton and is integrated in MoMuT::TA. It was not yet
published, but detailled information can be found in our technical report [11].

The unfolding during the determinization causes an exponential state-space
explosion. Our next step towards applying our approach to real industrial ex-
amples will thus be various optimizations. In a recent short paper [2] we already
presented a sketch of our ideas. We plan on pruning the unfolded tree during
its creation, to create partial models that do not cover all inputs, but still spec-
ify the complete output behavior for the remaining part. The pruning can be
done according to several different heuristics, ranging from random selection to
user-defined distribution.

1 https://momut.org//

Proceedings of the Doctoral Symposium of Formal Methods 2015

17

5 Conclusion and Future Work

In this report we summarized the current state of our research on timed au-
tomata, which is the main aspect of the presented PhD thesis. The doctoral
school is supposed to last three years, two of them have passed by now. So far,
our research led to eight publications. Three of these publications [1,2,3] dealt
with timed automata. At least three more publications on that topic are planned.

In the last year we will work on networks of non-deterministic timed au-
tomata. We want to create an unfolded product of all automata, where internal
communication channels are hidden and thus removed along with the silent
transitions. Then the determinization can be applied as for single automata.
Additionally, we want to perform all steps of the approach on the fly.

As soon as this is finished, we will start evaluating the approaches, where
we will focus on industrial use cases of our project partners from automotive
industry and commonly used timed automata benchmarks.

Acknowledgment

This work is supervised by Prof. Bernhard Aichernig. It has received fund-
ing from the ARTEMIS Joint Undertaking under grant agreements No 269335
and No 332830 and from the Austrian Research Promotion Agency (FFG) un-
der grant agreements No 829817 and No 838498 for the implementation of the
projects MBAT, Combined Model-based Analysis and Testing of Embedded Sys-
tems and CRYSTAL, Critical System Engineering Acceleration.

References

1. B. K. Aichernig, K. Hörmaier, and F. Lorber. Debugging with timed automata
mutations. In SAFECOMP 2014, Sept. 10-12, 2014. Proceedings, pages 49–64.

2. B. K. Aichernig and F. Lorber. Towards generation of adaptive test cases from
partial models of determinized timed automata. In A-MOST 2015, In Press.

3. B. K. Aichernig, F. Lorber, and Dejan Ničković. Time for mutants - model-based
mutation testing with timed automata. In Tests and Proofs, volume 7942 of LNCS,
pages 20–38. Springer Berlin Heidelberg, 2013.

4. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

5. Ch. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When are timed automata
determinizable? In ICALP, pages 43–54, 2009.

6. B. Bérard, A. Petit, V. Diekert, and P. Gastin. Characterization of the expressive
power of silent transitions in timed automata. Fundam. Inf., 36(2-3):145–182,
November 1998.

7. P. Daca, T. A. Henzinger, W. Krenn, and D. Nickovic. Compositional specifications
for ioco testing. In ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio,
USA, pages 373–382, 2014.

8. L. de Moura and N. Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer Berlin Heidelberg, 2008.

Proceedings of the Doctoral Symposium of Formal Methods 2015

18

9. A. Hessel and P. Pettersson. Cover-a test-case generation tool for timed systems.
Testing of Software and Communicating Systems, pages 31–34, 2007.

10. M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal
Methods in System Design, 34(3):238–304, 2009.

11. F. Lorber, A. Rosenmann, D. Ničković, and B. K. Aichernig. Bounded determiniza-
tion of timed automata with silent transitions. Technical Report IST-MBT-2015-
01, Graz University of Technology, Institute for Software Technology, 2015. Online.
https://online.tugraz.at/tug_online/voe_main2./

getVollText?pDocumentNr=1101473&pCurrPk=83975.
12. M. Mikucionis, B. Nielsen, and K. G. Larsen. Real-time system testing on-the-fly.

In Kaisa Sere and Marina Waldén, editors, NWPT 2003, number 34 in B, pages
36–38. Abo Akademi, Department of Computer Science, Finland.

13. B. Nielsen and A. Skou. Automated test generation from timed automata. In
TACAS 2001, held as Part of ETAPS 2001 Genova, Italy, April 2-6, 2001, Pro-
ceedings, pages 343–357, 2001.

14. R. Nilsson. Automated selective test case generation methods for real-time systems.
Master’s thesis, University of Skövde, Department of Computer Science, 2000.

15. Md T. B. Waez, J. Dingel, and K. Rudie. A survey of timed automata for the
development of real-time systems. Computer Science Review, 9:1–26, August 2013.

16. T. Wang, J. Sun, Y. Liu, X. Wang, and S. Li. Are timed automata bad for a
specification language? language inclusion checking for timed automata. In TACAS
2014, Held as Part of ETAPS 2014, pages 310–325, 2014.

Proceedings of the Doctoral Symposium of Formal Methods 2015

19

Proceedings of the Doctoral Symposium of Formal Methods 2015

20

Trace-length Independent Runtime Monitoring

Xiaoning Du

School of Computer Engineering, Nanyang Technological University
xndu@ntu.edu.sg

1 Introduction

Aircraft flight control, medical devices and nuclear systems are prime examples of
safety-critical Cyber-Physical Systems (CPS), whose failure could result in loss of life,
significant property damage, or damage to the environment. Generally, systems that can
cause information or financial loss are also considered as safety-critical [15], such as
smartphones. Mainly, the functions in such systems are controlled by embedded com-
puters and it is imperative to verify the functional correctness of the embedded soft-
ware [10]. Traditional verification techniques such as model checking often suffer from
practical infeasibility and/or theoretical impossibility [18]. As an alternative to veri-
fication and off-line testing, runtime monitoring (or runtime verification) is proposed
to verify system properties at execution time by using an online algorithm to check
whether a system trace satisfies a temporal property [3]. It is a novel light-weight verifi-
cation technique, where properties are to be checked against the executing system rather
than the abstracted model which is sometimes hard or impossible to establish. Practi-
cally, runtime verification on these platforms is always with tight timing constraints
and has high demands for the performance of the monitoring algorithms on both time
and space due to limited computing and storage resources of the embedded systems.
So it is not feasible to record the entire history of events happening in the past. For our
intended applications, once we fix the policies to be monitored, the monitoring algo-
rithms’ space requirement and running time at each state are expected to be constant
and will not increase as the traces grow.

Before designing the monitoring algorithms, we need to define a proper logic spec-
ification language with which to express the security related properties. As far as we
know, Linear temporal logic (LTL) has been widely used as a specification language to
specify runtime properties of systems and languages. A trace-length independent mon-
itoring algorithm for LTL has already been designed by Havelund et al. [14]. Tradition-
ally, the use of LTL is concerned mainly with qualitative properties, such as relative
ordering of events, or eventuality of events, etc. According to our survey on Android
malware detection, some attack patterns cannot be stated as pure LTL formulas as they
require specifications of quantitative measures such as frequency of certain activities
(e.g., sending SMS) commonly found in botnet attacks. From the above example we
can see that LTL is expressively restricted in the properties it can specify, and some
other semantical components need to be added on to broaden its expressiveness. There
are several aspects that deserve consideration, such as coping with variables ranging
over infinite domains, providing both universal and existential quantification, allowing
quantitative temporal operators, or simultaneously handling past and future temporal

Proceedings of the Doctoral Symposium of Formal Methods 2015

21

operators, as mentioned in [3]. Properties to be specified may take various forms and
can be given at varying degrees of abstraction. Aiming at stipulating as many prop-
erties as possible, we may achieve an extremely complicated logic, which is hard to
be monitored at runtime. Now we are encountered with the classic tradeoff between
expressiveness and complexity. An interesting question here is to what extend we can
broaden the expressiveness of the logic languages that can be monitored trace-length in-
dependently. Therefore, we will conduct a research on this problem, and our approach
and expected contributions are as follows.

Overall Approach. Basically, the aspects listed above will be considered and fused to
pure LTL, and some restrictions will be set to enforce trace-length independence. Iden-
tification of the syntactic restrictions will help to tell from the syntax of the formula
whether it can be enforced in a trace-length independent way, but it is not always pos-
sible. Then some semantic restrictions will be imported, e.g., in [11] it relies on some
external tools to find the equivalence classes etc. Even if extra demands on the monitor-
ing algorithms could be put forward for systems with different storage and computing
resource, we will treat the trace-length independent algorithms as an initial approach
and see how far we can push this idea on the runtime verification of embedded systems.

Expected Contributions. Above all, an expressive enough formal specification language
that can be used to specify a broad class of properties on the resource-limited platforms
will be designed. Besides, the corresponding trace-length independent monitoring algo-
rithm will be designed and its correctness and trace-length independence will be proved
theoretically. Finally, we will implement the monitoring algorithms on both software
and hardware platforms to demonstrate its general usability and make evaluation on its
performance.

2 Current Progress of Research

On account of the extremely limited computating and storage resource in embedded
systems, it is not practical to record the entire event history of the system. This criti-
cal requirement drives us to discover some trace-length independent monitoring algo-
rithms. Although the concept of trace-length independent monitoring was proposed in
the year 2013 in [4], there are already some prior works which imply this property in
their algorithm designs as in [13,14]. Havelund et al. [14] propose a trace-length inde-
pendent monitor algorithm for past-time LTL (ptLTL) in which all logical operators are
expressed in recursive form. One needs to maintain only two states for each subformula
of a policy to enforce without losing the completeness of the algorithm. This monitoring
algorithm does provide a foundation based on which we can explore trace-length inde-
pendent monitoring algorithms for more complicated logic specification languages with
more powerful expressiveness. Recent developments in metric LTL and its extensions
with aggregate operators allow some quantitative properties to be specified, augmenting
the expressiveness of the logics.

Inspired by the aggregation operators in database query language like SQL, Basin
et al. [2] extend metric first-order temporal logic (MFOTL) with aggregation operators,

Proceedings of the Doctoral Symposium of Formal Methods 2015

22

like SUM, CNT, MAX and AVG, and proposed a monitoring algorithm for language.
The core of this work is to translate policies specified with the extended MFOTL to the
corresponding extended relational algebra. For their monitoring algorithm, functions
are handled similarly to Prolog. Even through some optimizations are taken to acceler-
ate computations in monitoring, the aggregation operators are out of their consideration.
Another language, SOLOIST [8], is based on a many-sorted first-order metric temporal
logic and extended with new temporal modalities that support aggregate operators for
events occurring in a certain time window. For its monitoring, Bianculli et al. [9] pro-
posed to translate the formulae in SOLOIST to formulae of CLTLB(D) [7], and Bersani
et al. [6] presented an approach to encode SOLOIST formulae into QF-EUFIDL formu-
lae. Nevertheless, both approaches depend on SMT-solver to do the final satisfiability
checking. The evaluations of the above two works show that increasing time and mem-
ory will be needed when the length of the trace grows.

Up until now, there has been so far no study on trace-length independence mon-
itoring for LTL with aggregate operators like the counting quantifier. We solved this
problem in [11], and a policy specification language was proposed based on a past-time
variant of LTL, extended with an aggregate operator called counting quantifier to spec-
ify policies checking how many times some sub-policies are satisfied in the past. We
show that a broad class of policies, but not all policies, specified with our language can
be monitored in a trace-length independent way, and provide a concrete algorithm to
do so. We also implement and test our algorithm in an existing Android monitoring
framework and showed that our approach can effectively specify and enforce quantita-
tive policies drawn from real-world Android malware studies. This is a good start for
us to go further in the way of increasing the expressiveness of logics originating from
LTL.

3 Future Work

Metric Temporal Operators. Pure ptLTL cannot specify temporal constraints on logic
operators. Real-time runtime verification, however, prunes to specify some time related
properties. Imperative requirements for the temporal logic operators are put forward
in [1,16,21] on analysis of intrusion detection. Coincidentally, the essential parts of
all of their approaches to detecting potential attacks need to count how many times a
sub-policy is satisfied within some previous time intervals, e.g., in detection of TCP
syn flood attack, it is required to check how many times the sender fails to respond a
package with ack flag in the previous time unit. Thati et al. [20] design a monitoring
algorithm for Metric Temporal Logic (MTL). When restricted to the past time fragment,
the monitoring algorithm turns out to be trace-length independent, benefiting from the
recursive definitions of the semantics of operators. We will try to adapt our current
logic to include a metric temporal counting quantifier that counts how many times a
sub-policy is satisfied during some past time periods.

First-order Quantifiers and Recursive Definition. Gunadi et al. [13] lead up the idea to
extend past-time MTL (ptMTL) with first-order quantifier and recursive definition, pro-
viding a solution to monitoring the privilege escalation on Android. They also present

Proceedings of the Doctoral Symposium of Formal Methods 2015

23

a trace-length independent algorithm for monitoring properties written in their specifi-
cation language under various fine grained constraints. However, they do not deal with
quantifiers directly in their algorithm. Instead, the quantifiers are expanded into pure
propositional connectives, which are exponential in the number of variables in the pol-
icy. Another study [5] investigating the monitoring problem of first-order temporal logic
gives a monitoring algorithm using spawning automata, which is in principle trace-
length independent. It is worth to be investigated whether techniques using spawning
automata can be adapted to the setting in [13] to allow a lazy expansion of quantifiers
as needed. It is not possible to design trace-length independent monitoring algorithm in
the unrestricted first-order LTL, so the challenge is to find a suitable restriction that can
be enforced efficiently.

Future Temporal Operators. Up until now, we just consider the past time fragment of
linear temporal logics. In practice, however, future time semantics are indispensable.
For example, under some situations, it is required that a user who has a login must
logout within 3 hours eventually. In [12] a monitor circuit has been implemented to
avoid the exponential space consumption of bounded-future subformulas.

Implementation on Hardware. Classic runtime verification is to instrument the code
base of the system, while this kind of instrumentation cannot always be applicable to
some embedded systems due to the non-instrumentable hardware or mechanical parts.
Even if the instrumentation is applicable, additional verification overhead may alter
timing behavior and memory consumption. It can be seen that runtime verification
on hardware makes excessive demands on the efficiency of the monitoring algorithms
on both time and space. We will try to port out monitor on FPGA platforms similar
to [19,12,17]. In [17], Reinbacher et al. present an on-line algorithm to check a ptMTL
formula on executions with discrete time domain. They also discuss a reconfigurable
hardware realization of their observer algorithm that provides sufficient flexibility to al-
low for changes of formulas without necessarily re-synthesizing the hardware observer.
Taking advantage of the highly-parallel nature of hardware designs makes their observer
algorithms much efficient. The resulting hardware blocks can be applied in prototyp-
ing and runtime verification of embedded real-time systems. We will follow a similar
line to provide complete implementation of our trace-length independent monitoring
algorithm on hardware.

Acknowledgment. We thank the anonymous referees for their helpful comments. This
research is supported by the National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program (Award No. NRF2014NCR-
NCR001-30) and administered by the National Cybersecurity R&D Directorate. My
supervisors Yang Liu and Alwen Tiu have provided relevant insights related to this
work.

References

1. A. Ahmed, A. Lisitsa, and C. Dixon. A misuse-based network intrusion detection system
using temporal logic and stream processing. In NSS, pages 1–8, 2011.

Proceedings of the Doctoral Symposium of Formal Methods 2015

24

2. D. Basin, F. Klaedtke, S. Marinovic, and E. Zălinescu. Monitoring of temporal first-order
properties with aggregations. In RV, pages 40–58, 2013.

3. D. A. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric first-
order temporal properties. In FSTTCS, pages 49–60, 2008.

4. A. Bauer, R. Goré, and A. Tiu. A first-order policy language for history-based transaction
monitoring. In ICTAC, pages 96–111. 2009.

5. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order monitoring. In RV,
pages 59–75, 2013.

6. M. M. Bersani, D. Bianculli, C. Ghezzi, S. Krstić, and P. San Pietro. Smt-based checking of
soloist over sparse traces. In FASE, pages 276–290. 2014.

7. M. M. Bersani, A. Frigeri, A. Morzenti, M. Pradella, M. Rossi, and P. S. Pietro. Constraint ltl
satisfiability checking without automata. Journal of Applied Logic, 12(4):522 – 557, 2014.

8. D. Bianculli, C. Ghezzi, and P. San Pietro. The tale of soloist: a specification language for
service compositions interactions. In Formal Aspects of Component Software, pages 55–72.
2013.

9. D. Bianculli, S. Krstic, C. Ghezzi, and P. San Pietro. From soloist to cltlb (d): Checking
quantitative properties of service-based applications. 2013.

10. A. Dokhanchi, B. Hoxha, and G. Fainekos. On-line monitoring for temporal logic robustness.
In RV, pages 231–246, 2014.

11. X. Du, Y. Liu, and A. Tiu. Trace-length independent runtime monitoring of quantitative
policies in ltl. In FM, 2015.

12. B. Finkbeiner and L. Kuhtz. Monitor circuits for ltl with bounded and unbounded future. In
RV, pages 60–75, 2009.

13. H. Gunadi and A. Tiu. Efficient runtime monitoring with metric temporal logic: A case study
in the android operating system. In FM, pages 296–311. 2014.

14. K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In TACAS, pages
342–356, 2002.

15. J. C. Knight. Safety critical systems: challenges and directions. In ICSE, pages 547–550,
2002.

16. P. Naldurg, K. Sen, and P. Thati. A temporal logic based framework for intrusion detection.
In FORTE, pages 359–376. 2004.

17. T. Reinbacher, M. Függer, and J. Brauer. Real-time runtime verification on chip. In RV,
pages 110–125, 2013.

18. T. Reinbacher, M. Függer, and J. Brauer. Runtime verification of embedded real-time sys-
tems. Formal Methods in System Design, 44(3):203–239, 2014.

19. T. Reinbacher, K. Y. Rozier, and J. Schumann. Temporal-logic based runtime observer pairs
for system health management of real-time systems. In TACAS, pages 357–372. 2014.

20. P. Thati and G. Roşu. Monitoring algorithms for metric temporal logic specifications. Elec-
tronic Notes in Theoretical Computer Science, 113:145–162, 2005.

21. J. Viinikka and H. Debar. Monitoring ids background noise using ewma control charts and
alert information. In Recent Advances in Intrusion Detection, pages 166–187, 2004.

Proceedings of the Doctoral Symposium of Formal Methods 2015

25

Proceedings of the Doctoral Symposium of Formal Methods 2015

26

Inheritance and refinement of trustworthy
component-based systems

José Dihego

Universidade Federal de Pernambuco (UFPE) - Recife, PE, Brazil
jdso@cin.ufpe.br

Abstract. We propose inheritance and refinement relations for a CSP-
based component model (BRIC), which supports a constructive design
based on composition rules that preserve behavioural properties such as
deadlock freedom. The inheritance relations allow extension of function-
ality, whilst preserving service conformance, which we define by means
of a substitutability test. We also establish an algebraic connection be-
tween inheritance and refinement and outline how they can be verified
in the FDR modelchecker.

1 Introduction

Component-based model driven development (CB-MDD) [8] is a well recognised
approach to develop complex systems and has been successfully applied in indus-
try. The BRIC component model [6] is a formal approach to CB-MDD: it defines
components and compositions, where behavioural properties are ensured by con-
struction. Nevertheless, BRIC does not have notions for component refinement
and inheritance, an essential condition to evolve specifications reliably.

Different related work have tried to develop formal foundations for CB-MDD
[6, 3, 1], but they lack to offer refinement and inheritance in a trustworthy step-
wise development discipline. This is the main objective of this work and, as far as
the author is aware, the first attempt to integrate inheritance/refinement into a
formal CB-MDD approach where behavioural properties emerge by construction.

Section 2 presents our inheritance and refinement relations for BRIC based
on a novel concept called behavioural convergence. We also contextualise our
contribution in the light of relevant related work. Section 3 presents our conclu-
sions and the expected results.

2 Context and progress

A component in BRIC is defined as a contract that specifies its behaviour (a CSP
[7] process), communication points (CSP channels) and their types. Formally, a
component contract Ctr : 〈B,R, I,C〉 comprises an observational behaviour B

specified as a CSP process, a set of communication channels C, a set of interfaces
I and a total function R : C→ I between channels and interfaces of the contract.
We require the CSP process B to be an I/O process, which is a non-divergent
processes with infinite traces. Moreover, it offers the environment the choice over
its inputs (external choice) but reserves the right to choose between its outputs
(internal choice). It is suitable for a widely range of specifications, including the

Proceedings of the Doctoral Symposium of Formal Methods 2015

27

client-server protocol, where a client sends requests (inputs) to a server that
decides internally how to respond (output).

Contracts can be composed using any of the four rules available in the model:
interleaving, communication, feedback, or reflexive (Figure 1). Each of these rules
impose different side conditions, which must be satisfied by the contracts and
channels involved in the composition in order to guarantee deadlock freedom
by construction. Interleave composition creates a loosely coupled component by
putting together two others, which communicate independently with the envi-
ronment. The communication composition connects a pair of channels of two
different components, where one inputs the outputs generated by the other. Self
connections are possible by the use of reflexive/feedback compositions: reflexive
is more general than feedback, as it does not constrain the channels to be con-
nected, whereas feedback composition impose conditions to allow local analysis.

Fig. 1. Composition rules

2.1 Component inheritance and refinement

The concept of inheritance in the object-oriented paradigm is well-established [5].
A strong form of inheritance is subtyping [4], which allows reuse and extensibility
and, moreover, fulfils the principle of type substitutability [9]: an instance of the
subtype should be usable wherever an instance of the supertype was expected,
without a client being able to tell the difference. Recently, efforts have been made
to extend this concept to process algebras as CSP. Notably, in [10] the author
proposes four types of behavioural inheritance relations to Labelled Transition
Systems. Although very promising, these relations do not consider specifications
that distinguish inputs from outputs, such as BRIC. We base our approach
towards an inheritance relation for BRIC on the concept of convergence [2]: a
convergent process is allowed to do the same as or enable more inputs than its
parent process, but is restricted to do the same or less outputs in convergent
points. A convergent point represents a state reachable by both the original and
the convergent process when doing two convergent sequences of events: these
sequences differ only because the convergent process is allowed to do extra inputs,
i.e. new-in-context inputs not allowed by the original process at related states.

An I/O process T ′ is convergent to T (T ′ io cvg T , Definition 1) if in each
converging point of their execution it can offer more or equal inputs but is
restricted to offer less or equal outputs. A convergent I/O process can engage in
more inputs to take more deterministic decisions on what to output. In Definition
1, T(T) and F(T) stand for the traces and failures of a process T , respectively; Σ
stands for the alphabet of all possible events, Σ∗ is the set of possible sequences
of events from Σ, the input events are contained in Σ (inputs ⊆ Σ) and in(T, t)
is a function that yields the set of input events that can be communicated by the
I/O process T after some t ∈ T(T), therefore in : I/OProcess × Σ∗ → inputs.
Additionally, if t1 ≤ t2, it means that t1 is a subtrace of t2.

Proceedings of the Doctoral Symposium of Formal Methods 2015

28

(a) T

0

1

c.in.v.1

2

c.in.v.2

5

τ

6

τ

3

τ

4

τ

c.out.v.1 c.out.v.2 c.out.v.3 c.out.v.4

(b) T'

0

3

c.in.v.3

1

c.in.v.1

2

c.in.v.2

4

c.in.v.1

5

c.in.v.2

8

c.in.v.3

7

c.in.v.2

c.out.v.4

c.out.v.2c.out.v.1

6

c.in.v.3

c.out.v.3

c.out.v.1

Fig. 2. I/O convergent behaviours

Definition 1 (I/O convergent behaviour). Consider two I/O process T
and T ′. T ′ is an I/O convergent behaviour of T (T ′ io cvg T) if, and only if:

∀(t′, X) ∈ F(T ′),∃(t, Y) ∈ F(T) •

t′ cvg t ∧
Y ∩ inputs ⊇ X ∩ inputs ∧
Y ∩ outputs ⊆ X ∩ outputs

 where, t′ cvg t⇔

(#t′ > #t) ∧ ∃ t1, t3 : Σ∗,∃ne : Σ |

t′ = t1 ˆ〈ne〉ˆt3 ∧ t1 ≤ t ∧
ne ∈ inputs ∧ ne /∈ in(T, t1) ∧

t1 ˆt3 cvg t

 ∨ (t′ = t)

It can be useful to offer other events after a new input and before converg-
ing to its original behaviour. This extension to convergence allows convergent
processes to add more implementation details decreasing the abstraction level
of specifications. An extended convergent process T ′ can accept any event not
expected by T (T ′ io ecvg T , Definition 2) in an extended convergent point
of their execution, provided a new-in-context input has happened, marking the
start of the extended convergent behaviour of T ′. Figures 2(a) and 2(b) depict
two convergent I/O processes, T ′ io cvg T , where we bold face new in-context
input events allowed by this relation. Figures 3(a) and 3(b) shows the case where
T ′ io ecvg T : after a new-in-context input event, T ′ can communicate every-
thing it wants before converging to T .

Definition 2 (I/O extended convergent behaviour). Consider two I/O
process T and T ′. We say that T ′ is an I/O extended convergent behaviour of T
(T ′ io ecvg T), if and only if:

∀(t′, X) ∈ F(T ′),∃(t, Y) ∈ F(T) •

t′ ecvg t ∧

(
Y ∩ inputs ⊇ X ∩ inputs ∧
Y ∩ outputs ⊆ X ∩ outputs

)

∨ (Σ8Y ⊆ X)

where, t′ ecvg t⇔

(#t′ > #t) ∧ ∃ t1, t2, t3 : Σ∗,∃ne ∈ Σ |

t′ = t1 ˆ〈ne〉ˆt2 ˆt3 ∧ t1 ≤ t ∧
ne ∈ inputs ∧ ne /∈ in(T, t1) ∧

set(t2) ∩ (in(T, t1) ∪ out(T, t1)) = ∅ ∧
t1 ˆt3 ecvg t

∨ (t′ = t)

Component inheritance. Our definition of inheritance deals with component
structural and behavioural aspects. Structurally, it guarantees that the inherited
component preserves at least its parent’s channels and their types. Regarding
behaviour, they are related by convergence. Additionally, it guarantees, for the
purpose of substitutability, that the inherited component only refines the be-
haviour exhibited by common channels (default channel congruence) or that

Proceedings of the Doctoral Symposium of Formal Methods 2015

29

(a) T

0

1

c.in.v.1

2

c.in.v.2

5

τ

6

τ

3

τ

4

τ

c.out.v.1 c.out.v.2 c.out.v.3 c.out.v.4

(b) T'

0

1

c.in.v.1

2

c.in.v.2

3

c.in.v.3

13

c.in.v.2

14

c.in.v.3

c.out.v.4

4

c.in.v.4

c.out.v.1 c.out.v.2

5

τ

6

τ

10

c.out.v.1

7

c.out.v.2

11

c.in.v.1

12

c.in.v.2

8

c.in.v.1

9

c.in.v.2

c.out.v.2 c.out.v.3c.out.v.1 c.out.v.4

Fig. 3. I/O extended convergent behaviours

additional inputs over common channels are not exercised by any possible client
of its parent (input channel congruence). We also contribute with a refinement
relation for BRIC, which is based on failures refinement of CSP [7].

Definition 3 (component inheritance). Consider T and T ′ two BRIC com-
ponents, such that RT ⊆ RT ′ . We say that T ′ inherits from T :

• by convergence: T ^cvg T
′ ⇔ BT ′ io cvg BT

• by extended convergence: T ^ecvg T
′ ⇔ BT ′ io ecvg BT

provided their corresponding channels are default or input channel congruent.

Definition 4 (component refinement). Consider T and T ′ two BRIC com-
ponents. We say that T ′ refines T (T vB T ′) if and only if:

BT vF BT ′ ∧ RT ⊆ RT ′

We expect to prove the next proposition as a theorem. It relates refinement
and inheritance presenting inheritance as a relation that supports evolution, by
which we can always extract an abstraction component from another.

Proposition 1 (inheritance and refinement). Let T , Tcon and Tabs be com-
ponent contracts, such that Tabs ^cvg Tcon or Tabs ^ecvg Tcon, then T vB Tcon.

Component inheritance based on convergence guarantees substitutability in
the sense that if T ^ecvg T ′ (or T ^cvg T ′), then T ′ can replace T in any
composition it can take part without introducing deadlock. Moreover, any com-
ponent acting as a T client cannot tell the difference when using T ′, even if its
new functionalities are exercised by other clients.

Checking convergence in FDR. An important issue we must address is how to
build an automated strategy to verify convergence. Our strategy is to construct
a tester process such that: T ′ io cvg T ⇐⇒ Tester cvg(T) vF T

′, where T and
T ′ are components.

Proceedings of the Doctoral Symposium of Formal Methods 2015

30

Consider T an I/O process, then cvg+T stands for a set of I/O processes such
that: ∀T ′ ∈ cvg+T | T ′ io cvg T . The set cvg+T is infinite, which makes this
use prohibitive for any implementation that aims to traverse it entirely. A finite
subset of cvg+T is given by cvg+nT , which stands for the T convergent processes
whose depth differ from that of T at most by n (n ∈ N). An I/O process depth
is given by the greatest number of events that makes a process came back, only
once, to its initial state.

Our strategy is to construct Tester cvg(T) to be the lower bound pro-
cess of cvg+nT under failures refinement. Therefore, T ′ io cvg T is reduced to
Tester cvg(T) vF T

′. The same reasoning applies to check T ′ io ecvg T .

3 Conclusions and expected results
This paper presents an overview of our developments towards a theory for compo-
nent refinement and inheritance for CB-MDD based on behavioural convergence.
We expect to create a sound theory to safely evolve CB-MDD specifications and
to explore our developments on well-known critical systems by mechanising the
crucial aspects of our theory.

Acknowledgments. This work was partially supported by the National Insti-
tute of Science and Technology for Software Engineering (INES 1), funded by
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

References
1. Zhenbang Chen, Zhiming Liu, Anders P. Ravn, Volker Stolz, and Naijun Zhan.

Refinement and verification in component-based model-driven design. Sci. Comput.
Program., 74(4):168–196, February 2009.

2. José Dihego, Augusto Sampaio, and Marcel Oliveira. Constructive extensibility of
trustworthy component-based systems. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, SAC ’15. ACM, 2015.

3. He Jifeng, Xiaoshan Li, and Zhiming Liu. rcos: A refinement calculus of object
systems. Theoretical Computer Science, 365:109 – 142, 2006. Formal Methods for
Components and Objects Formal Methods for Components and Objects.

4. Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, 1994.

5. B. Meyer. Object-Oriented Software Construction. Prentice-Hall International, 2nd
edition, 1997.

6. R. Ramos, A. Sampaio, and A. Mota. Systematic development of trustworthy
component systems. In 2nd World Congress on Formal Methods, volume 5850 of
Lecture Notes in Computer Science, pages 140–156. Springer, 2009.

7. A. W Roscoe. Theory and Practice of Concurrency. Prentice-Hall Series in Com-
puter Science. Prentice-Hall, 1998.

8. Clemens Szyperski. Component Software: Beyond Object-oriented Programming.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

9. Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modification
mechanism or what like is and isn’t like. In Proceedings of the European Conference
on Object-Oriented Programming, London, UK, 1988. Springer-Verlag.

10. Heike Wehrheim. Behavioral subtyping relations for active objects. Form. Methods
Syst. Des., 23(2):143–170, 2003.

1 www.ines.org.br

Proceedings of the Doctoral Symposium of Formal Methods 2015

31

Proceedings of the Doctoral Symposium of Formal Methods 2015

32

Component-based CPS Verification: A Recipe
for Reusability

Andreas Müller
Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

andreas.mueller@jku.at

1 Overview

Cyber-physical systems (CPS) are today pervasively embedded into our lives
and increasingly act in close proximity as well as with direct impact to humans.
Because of their safety-criticality, we have to ensure correctness properties, such
as safety and liveness. Thus, formal verification techniques to analyze CPS are
of paramount importance to guarantee these properties.

Formal verification methods rest on models capturing the discrete and con-
tinuous dynamics of a CPS (i. e., hybrid system models), which abstract from im-
plementation details to facilitate verification. Since formal verification of hybrid
systems is known to be undecidable for realistic models, current methods make a
trade-off between full automation (model checking and reachability analysis re-
stricted to certain classes of hybrid systems, e. g., [5]) and model expressiveness
(deductive verification of complex models mixing automated and human guided
proofs, e. g., [7]). To make human guidance feasible despite complex continuous
dynamics, CPS practically mandate for techniques to reduce system complexity.

We study decomposing a model into smaller components, which can be
proven separately before re-composing them to a fully verified model. With
current deductive verification techniques for CPS, however, the price for such
component-based development is full re-verification on every composition step,
which is a nuisance if human guidance is required each time.

Vision: reduce modeling and verification effort and complexity, and
increase reusability by component-based CPS development.

Although component-based software engineering in general has seen exten-
sive research, only few approaches explicitly deal with CPS, like Damm et al. [3],
who propose a design methodology for hybrid systems based on sequential com-
position of components using alarms.

A field closely related to component-based verification is assume-guarantee
reasoning (AGR), which was originally intended as a device to counteract the
state explosion problem in model checking by decomposing a verification task
into subtasks. In AGR, individual components are analyzed together with as-
sumptions about their context and guarantees about their behavior (i. e., a com-
ponent’s “contract”). Benvenuti et al. [1] propose an approach to check these
contracts for hybrid automata with non-linear dynamics, using the reachabil-
ity toolbox Ariadne. AGR is often used along with abstraction/refinement ap-

Proceedings of the Doctoral Symposium of Formal Methods 2015

33

proaches (e. g., [2]) and the rules are often circular in the sense that one compo-
nent is verified in the context of the other and vice-versa (e. g., [5]).

Summarizing, current component-based approaches are often limited to lin-
ear dynamics (e. g., [2,3]), need to abstract away continuity (e. g., [5]) or rely on
reachability analysis, over-approximation and model checking (all of the above).
In the next section we will propose a component-based modeling and verification
approach based on deductive verification.

2 Research Approach

We will follow a three-step research approach, where we (i) conduct initial
case studies, to gain insight into decomposition options in deductive verification,
(ii) develop component-based modeling and verification for hybrid systems and
(iii) evaluate our findings with case studies.

For this work, we use differential dynamic logic (dL), which is a first-order
dynamic logic that has a notation for hybrid systems as hybrid programs and its
hybrid deductive verification tool KeYmaera [7] that allows proving correctness
properties of these hybrid programs. Hybrid programs allow sequential composi-
tion, non-deterministic choice, repetition and assignment, deterministic assign-
ments, state checks and continuous evolution. Here a hybrid interpretation of
time is used, where time evolves continuously and without discretization during
continuous evolution and in discrete steps otherwise. The hybrid programs can
be embedded into dL formulas using the modalities [a] and 〈a〉 to reason about
all runs of a hybrid program a or at least one run of a respectively.

The ultimate goal is a framework that provides a set of composition oper-
ations that transfer verified properties of the internal and external behavior of
components to composites. Users then have to decompose a system into compo-
nents, verify their internal and external behavior in isolation according to our
framework and use the composition operations to recreate the overall system.
The properties of the composed system can be derived from its components.

2.1 Initial Compositional Modeling and Verification Case Studies

Based on prior experience with road traffic1 we will introduce compositional
modeling and verification of road networks. Road network capacity analysis in-
volves highly repetitive parts, such as traffic lights or merging roads. On that
account, we coarsely approximate traffic flow using linear water tank models.
These limitations allow studying component interfaces, continuous dynamics
and composition in a restricted setting of a single composition operation (i. e.,
instantaneous, loss-less passing of flow) and simplified continuous dynamics (i. e.,
approximate flows with linear ordinary differential equations (ODEs)).

We will complement the macroscopic network flow study, which is highly
time-dependent, as flow accumulates over time, with a microscopic case study

1 Gained in the research project CSI (http://csi.situation-awareness.net).

Proceedings of the Doctoral Symposium of Formal Methods 2015

34

on autonomous cars, which mainly have to deal with their ever changing sur-
roundings and where safety criticality is even more of an issue. Thus, we have to
extend our previous approach with multiple composition operations (e. g., noisy
measurements) and non-linear continuous dynamics (e. g., curved trajectories).

Status: Traffic Components with Maximum Flow. We modeled three
types of flow components (traffic light, two-way-merge, two-way-split) and veri-
fied that they will not exceed their capacity for some time Tlocal, when consid-
ering the maximum possible in- and outflow of a component. Furthermore, we
introduced a composition operation which results in a safe composite, if both
components follow their local safety property and a simple arithmetic compo-
sition relation holds. This condition has to be checked using designated values
when composing components to form the whole system. While deciding the valid-
ity of a safety property for the entire traffic network would be doubly exponential
in the (assumable large) number of variables [4], the evaluation of the arithmetic
condition over the reals for concrete numbers is linear in the formula size [6].
Thus, the arithmetic composition relation can be checked at scale in a model-
ing tool when building road networks. When it holds, the local safety property
transfers to the whole system, ensuring no overflow until a time Tglobal.

2.2 Component-based CPS Development

Component-based CPS development and verification requires definition and ver-
ification of components (i. e., their internal behavior) and their interfaces (i. e.,
their external behavior), as well as their verified composition. The concepts in
this section are all work in progress and the descriptions and examples illustrate
ideas rather than final contributions.

Internal Behavior. While dL is well-suited to describe hybrid systems, the
intent behind variables cannot be specified (e. g., can a controller set a cars
acceleration?). We envision a logic based on dL, extending it by a type system
for variables. For implementation it is useful to distinguish between sensors
and actuators, environmental (laws of physics) and control variables (set by
choice). For verification, it is useful to distinguish between readable, writeable,
discrete, and continuous variables. Approaches based on hybrid automata often
distinguish between input, control and output variables.

The verification of the internal behavior of a component can make use of vari-
able types, which are usually neglected when proving dL formulas.

∆, c ↓ x, c ↑ y ` φyx, Γ
∆, c ↓ x, c ↑ y ` [x := y]c φ, Γ

Fig. 1. Proof Rule

For instance, the controller is only allowed to
set certain variables to which it has write access
(e. g., set cars acceleration, but not its position).
The proof rule2 in Fig. 1 for assigning the value
of a variable y to a variable x in a component c, requires write access to x and
read access to y. Similar rules could be derived for other operations (e. g., ODEs),
to enforce type safety during proofs.

2 c ↓ x means “c has write access to x”, c ↑ y means “c has read access to y”

Proceedings of the Doctoral Symposium of Formal Methods 2015

35

External Behavior. The external behavior of a component is defined by its
interface, including contracts on input and output ports. Similar to AGR, the
interface specifies a contract (e. g., ψ1 → [C1]φ1, i. e., assuming ψ1, all runs of
component C1 guarantee φ1) about what the component assumes at its input
ports (assumption ψ1) and what it guarantees at its output ports (guarantee ψ1).
The contract ψ1 and φ1 can be specified in various ways. Automata-based AGR
approaches (e. g., [5]) mostly use some kind of automaton-based specification.
In deductive verification, predicates over the input variables or timed regular
expressions are more suitable. Considering the traffic flow example introduced
initially, they provide a way of stating which flow is produced by an output for
which duration of time and thus allows a detailed interface description (e. g.,
(3 · A; 1 · B)∗ means flow A for 3 time units followed by flow B for 1 time unit
repeated indefinitely). Note, that every behavior described using timed regular
expressions can also be expressed using dL.

Verification. To ensure formally verified CPS components, two aspects must
be considered, namely, verifying that the internal behavior actually follows its
specified external behavior (e. g., ψ1 → [C1]φ1) and verifying that a component’s
external behavior is feasible for the operational area at hand and obeys a given
local safety condition (e. g., under weaker assumptions Φ1, stronger promises Ψ1

are guaranteed, i. e., (Φ1 → φ1) ∧ (ψ1 → Ψ1), cf. “dominance” in [1]).

In order to model and ensure safety of an entire CPS, we further need a way
of safely combining the aforementioned components. Since time always passes
simultaneously throughout a hybrid system, components have to be composed
in parallel. We envision composition operations that go beyond loss-less instan-
taneous value passing and propose composition operators, including (i) port
forwarding operators (i. e., loss-less and instant connection), (ii) operators that
influence the continuous evolution of components (e. g., components evolve dur-
ing communication delay), (iii) operators that affect the forwarded information
(e. g., uncertainty for measurements, noise on electrical signals), and (iv) op-
erators that perform state estimation of non-accessible values (e. g., estimate
the acceleration by measuring the change of speed). An example composition
operation is the noisy composition: �

noise
≡ x̃ := ∗; ? |x̃− x| ≤ δ.

The ultimate goal is to ensure that the composite system obeys to a global
safety condition Φ if it is started in a safe state Ψ , i. e., Ψ → [C1� C2]Φ, which
can be achieved by an assume-guarantee style rule for deductive verification us-
ing dL. If it is ensured that a component (e. g., C1) follows its external behavior
specification (i. e., it obeys its contract, e. g., ψ1 → [C1]φ1) and ensures its local
safety condition (e. g., φ1 → Φ1), it remains to ensure provably correct compo-
sition, and (if required) automatically derive composition proof obligations Θ to
ensure overall system correctness (e. g., (

∧
i Φi) ∧Θ → Φ).

In our initial case study on traffic networks, a composition operation connects
two roads allowing cars to drive from one component to another (e. g., from a
traffic light to an intersection). For a sample component (e. g., a traffic light)
the contract restricts the maximum outflow and the load (i. e., ratio between
used and available space on the road) of a component. Here, the local safety

Proceedings of the Doctoral Symposium of Formal Methods 2015

36

property and the composition property are the same for all components, stating
that it should not produce a traffic breakdown for a predefined time (i. e., the
number of cars should never exceed the available space) and respectively that
the outflow of a component must not be larger than the allowed inflow of the
subsequently connected one. If these properties hold, the overall safety property
(i. e., no overflow anywhere in the network for a predefined time) can be inferred.

2.3 Evaluation

We plan to implement a software prototype, which will include a library of com-
ponents and associated composition operations. To show the applicability of the
approach, we already implemented a tool called SAFE-T3. Based on maximum-
flow components it allows combining them to larger traffic networks, while check-
ing the aforementioned arithmetic composition condition automatically. The tool
can be used to find the origin of a traffic breakdown and analyze how it will prop-
agate through the network.

Based on the implementation, we will consider existing case studies and com-
pare our compositional models to the original, monolithic ones specifically w.r.t.
model complexity and proof effort.

Acknowledgements. Work funded by BMVIT grant FFG BRIDGE 838526,
by OeAD Marietta Blau grant ICM-2014-08600 and as part of P28187-N31.

References

1. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume–
guarantee verification of nonlinear hybrid systems with Ariadne. Int. J. of Robust
and Nonlinear Control 24(4), 699–724 (2014)

2. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
Yahav, E. (ed.) Hardware and Software: Verification and Testing, LNCS, vol. 8855,
pp. 116–131. Springer (2014)

3. Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards component based design
of hybrid systems: Safety and stability. In: Manna, Z., Peled, D. (eds.) Time for
Verification, LNCS, vol. 6200, pp. 96–143. Springer (2010)

4. Davenport, J.H., Heintz, J.: Real Quantifier Elimination is Doubly Exponential. J.
Symb. Comput. 5(1-2), 29–35 (1988)

5. Frehse, G., Zhi Han, Krogh, B.: Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In: 43rd IEEE Conf.
on Decision and Control, CDC. vol. 1, pp. 479–484 Vol.1 (2004)

6. Mitsch, S., Platzer, A.: ModelPlex: Verified Runtime Validation of Verified Cyber-
Physical System Models. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Veri-
fication - 5th Int. Conf., RV 2014. LNCS, vol. 8734, pp. 199–214. Springer (2014)

7. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

3 SAfe Flow-component Editor for Traffic networks,
available online: http://www.tk.jku.at/people/mueller/publications/itsc15/

Proceedings of the Doctoral Symposium of Formal Methods 2015

37

Proceedings of the Doctoral Symposium of Formal Methods 2015

38

A Novel and Faithful Semantics for Feature
Modeling

Aliakbar Safilian

Department of Computing and Software, McMaster University
safiliaa@mcmaster.ca

Abstract. The most common approach to model product lines is fea-
ture modeling. Feature models are grouped into basic and cardinality-
based feature models. The common understanding of the semantics of
feature models is a Boolean semantics. We argue that this semantics
does not capture all practically useful information of feature models. To
overcome this deficiency, we propose a Kripke semantics for basic feature
models and hence the appropriate logic would be a modal logic. As for
cardinality-based feature models, we use formal language theory to get a
faithful semantics. These ways, we could apply off-the-shelf model check-
ing and formal languages tools, respectively, to do automated analysis
over feature models.

1 Research Problems and Objectives

A product line is a set of products that share some common features. A fea-
ture is “a distinguishable characteristic of a concept that is relevant to some
stakeholders” [9]. Product line engineering has many advantages in software de-
sign, including a significant reduction in cost and development time [5]. Feature
modeling is the most common approach for modeling commonalities and vari-
abilities of product lines. A feature model (FM) is a tree of features presenting
their hierarchical decomposition, called feature diagram (FD), with some pos-
sible crosscutting constraints (CCs) between them. Feature modeling languages
are grouped into basic and cardinality-based FMs. Fig. 1(a) is a basic FM (elec,
mnl, atm stand for electric, manual, automated, respect.): edges with filled and
unfilled circles denote mandatory and optional features; filled and unfilled angles
denote OR and XOR groups. In cardinality-based FMs, cardinalities on features
and groups are used in place of traditional annotations. Fig. 1(b) provides an
example of a cardinality-based FM for a grant application system. Cardinality-
based FMs are much more expressive than basic ones, since they also specify
extra requirements regarding the number of feature instances.

The common understanding of the semantics of an FM in the literature is its
product line (a Boolean semantics). However, this semantics loses some essential
information of FMs. For a very simple example, consider two FMs M1 (a is the
root and b is the only mandatory child of a) and M2 (b is the root and a is the
only mandatory child of b). M1 and M2 represent the same product line con-
sisting of only the product {a, b}, but their hierarchical structures are different.

Proceedings of the Doctoral Symposium of Formal Methods 2015

39

car$

eng$ trans$

mnl$ atmgas elec$

Awards$

NSERC$ GB$ IE$

[12]$

ref$
[1..*]$

Product$

lp$ dp$

key$ key$
product$

lp$ pc$

key$

car$

eng$ gears$

mnl$ atmgas elec$ abs$

brakes$

✕$ ✕$
oil$

awards$

[0..1]

[0..*] NSERC$ GB$ IEref

A+$[2..*]

elec$$excludes"mnl$
atm$$includes$$gas$

car$

eng$ gears$

mnl$ atmgas elec$ abs$

brakes$

✕$ ✕$

Grant&applica+on-

Ci+zen- Interna+onal-

markA- Publica+on-

(1, 1)

(2, *) (1, *)

int-local-

markA-

D"
grant_appl.-

(2,*)-

(1,1)-

pub-
(1,2)-

(1,*)-

(a) (b)

Fig. 1: (a) a basic FM, (b) a cardinality-based FM

The forgotten semantics is important in analysis operations over and reverser
engineering of FMs. Indeed, any analysis operation relying on the hierarchical
structure of a given FM cannot be addressed using its Boolean semantics. Such
analysis operations, including Least Common Ancestor of a given set of features,
Sub-features of a given feature were explicitly characterized in the literature as
necessarily relying on this information [2]. Also, the main reason making the
current state of the art approach for reverse engineering of FMs [8] heuristic is
mainly caused by using such a poor semantics.

Industrial FMs may be very complex involving thousands of features. Hence,
they should be represented as formal objects processable by tools. The most
common methods to do automated analysis on FMs are based on propositional
logic and constraint programming. In these methods, a given FM is translated
into propositional logic formulas or constraint programming codes, and then
some off-the-shelf tools (e.g., SAT solvers) are used for reasoning about the
model. However, these approaches have two drawbacks. First, they cannot sup-
port cardinality-based FMs, since such FMs cannot be encoded into these lan-
guages. Second, some operations cannot be implemented in these methods be-
cause propositional logic and constraint programming translations are based on
the Boolean semantics of FMs, which is a forgetful semantics.

To fix these problems, we need to address the following research questions:

Q1) What is a proper semantics for FMs capturing all interesting and useful
aspects of models? What language is appropriate for specifying FMs?

Q2) Develop a formal framework for defining the analysis operations on FMs
and propose/design an automated tool to support all analysis operations on FMs.

To address the question Q1, we propose a Kripke semantics for basic FMs
and hence the appropriate logic would be a modal logic. As for cardinality-based
FMs, we use formal language theory to get a faithful semantics. Addressing Q1
underpin the ability to address Q2: we use model checking techniques and off-
the-shelf language tools for implementing analysis operations over basic and
cardinality-based FMs, respectively.

Proceedings of the Doctoral Symposium of Formal Methods 2015

40

2 Literature Review

In this section, we briefly review the most common approaches for formalizing
the semantics of FMs: propositional logic and context-free grammars for basic
and cardinality-based FMs, respectively. We refer the reader to [4] and [6] for a
more complete review of the literature.

Using Propositional Logic for Basic FMs: The product line of a given
basic FD can be translated into a propositional logic formula generated over
the set of features [1]. In this sense, any logical formula can be seen as a CC.
The propositional logic encoding enables us to use logic-based tools, such as
SAT solvers and Binary-Decision Diagram libraries, for the analysis of FMs. As
argued in the first section, the Boolean semantics does not capture all essential
information of FMs, which implies that this encoding cannot address all analysis
questions over FMs, especially those involving the hierarchical structure of FMs.

Using Context-free Grammars for Cardinality-based FMs: Czarnecki
et al, in [3], formalize the semantics of cardinality-based FDs using context-free
grammars. The grammar generated for a given cardinality-based FD represents
its product line. However, a problem of this procedure is that it gives a left-to-
right ordering on siblings (the nodes with the same parent). Such an ordering
entails that some syntactically equivalent cardinality-based FDs have different
semantics. In addition, generative grammars do not capture the hierarchical
structure of cardinality-based FDs. Also, the procedure entirely ignores CCs.
This is an essential deficiency, since CCs play a central role in feature modeling.

3 Current Stage of Research

As mentioned in Sect. 1, we use modal logic and formal languages for capturing
the semantics of basic FMs and cardinality-based FMs, respectively. Due to the
page limitation, we just briefly discuss the modal logic approach. We refer the
reader to [7] for the formal languages approach for cardinality-based FMs.

Our observation is that an FM defines not just a set of valid products, but
the very way in which these products are to be decomposed step by step from
constituent features. Correspondingly, we propose a transition system for FMs,
called partial product lines (PPLs), initialized at the root feature and gradually
progressing towards full products. Fig. 2(c) without the grey elements represents
a fragment of the PPL of the FM in Fig. 1(a); the number of letters in the
acronym for a feature corresponds to its level in the tree, e.g., c stands for car,
en for eng etc. Nodes in a PPL denote partial products, i.e., full products with,
perhaps, some features missing. The set of full products is a subset of the set of
partial products. The PPL of a given FM must satisfy the following requirements:

(i) (tree structure): If a feature is included in a product, then its parent must
also be included. For an example, the set {en} is not a valid partial product for
the PPL in Fig. 2(a).

(ii) (exclusive constraints): Partial products must satisfy the exclusive con-
straints. For an example, a set including both atm and mnl is not a valid product.

Proceedings of the Doctoral Symposium of Formal Methods 2015

41

brakes'

M1#

car'

eng'

abs'

eng'

car' brakes' abs'

M2#

{c}'

{c,e}' {c,b}'

'{c,b,a}'{c,e,b}'

{c,e,b,a}'

{e}'

{e,c}' {e,a}' {e,b}'

{e,c,b}'{e,a,b}'{e,a,c}'

{e,a,b,c}'

(b)

(c)

c,en

c,en,gas

c,en,
gas,ele

c,en,ele

c, ge

c,ge,mnl
c,ge,atm

c

c,en,ge

c,ge,mnl
,en

c,en,ele,ge

c,en,ge
gas,ele #(a'fragment)'

(a)

Fig. 2: From BFMs to PPLs

(iii) (Singletonicity): For any transition P −→ P ′: P ′ \ P is a singleton set.

(iv) (I2C principle): Processing a new branch of the feature tree should only
begin after processing of the current branch has reached a full product. We call
this requirement instantiate-to-completion (I2C). Importantly, I2C can prohibit
some transitions. Obviously, removing some transitions may result in making
some products unreachable from the initial product. For an example, consider
the partial product P = {c, en, ge} in Fig. 2(a). Transition {c, en} −→ P is not
a valid one, since gear was added to engine before the latter is fully assembled.
Similarly, transition {c, ge} −→ P is also not valid as engine is added before
gear instantiation is completed. Hence, P becomes unreachable, and should be
removed from the PPL. (in the diagram, invalid edges are dashed.)

Other constraints in the FM influence only full products. We have proven
that the above conditions make PPLs faithful semantics counterparts of FMs
(please see [4] for the proofs). For an example, consider the FMs and their
corresponding PPLs in Fig. 2(b) and (c). The full products are identified by
circles in the figure. We see that although both FMs have the same produt
line, their PPLs are essentially different, which reflects the essential difference
between the FMs.

We distinguish full products by supplying them (the nodes corresponding
to), and only them, with identity loops and come to special standard Kripke
structures, called feature Kripke structures (fKSs). We define feature computation
tree logic (fCTL), which is a fragment of the computation tree logic (CTL)
enriched with a constant modality (for specifying full products) to capture the
theory of fKSs.

Proceedings of the Doctoral Symposium of Formal Methods 2015

42

Given an FM M, we build two fCTL theories, ΦML⊆(M) and ΦML(M), such
that the former theory is a subset of the latter, and the following statements
hold for any fKS K:

Theorem 1 (Soundness). PPL(M) |= ΦML(M).

Theorem 2 (Semi-completeness). K |= ΦML⊆(M) implies K v PPL(M).

Theorem 3 (Completeness). K |= ΦML(M) iff K = PPL(M).

In Theorem 2, v denotes the substructure relation, i.e., K v PPL(M) means
that K is a substructure of PPL(M). Completeness allows us to replace FMs by
the respective fCTL-theories, which are highly amenable to formal analysis and
automated processing. Semi-completeness is useful (as an auxiliary intermediate
step to completeness, but also) for some important practical problems in FM such
as specialization [10] (M is a specialization of another FM M′ if the product line
of M is a subset the product line of M′), and some other analysis operations [2]
over FMs. These operations are normally considered for full product lines (FPLs)
only, but can be redefined for PPLs as well.

References

1. D. Batory. Feature models, grammars, and propositional formulas. Springer, 2005.
2. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models

20 years later: A literature review. Information Systems, 35(6):615–636, 2010.
3. K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-based fea-

ture models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005.

4. Z. Diskin, A. Safilian, T. Maibaum, and S. Ben-David. Modeling product lines
with kripke structures and modal logic. (GSDLab TR 2014-08-01), 08/2014 2014.

5. K. Pohl, G. Böckle, and F. Van Der Linden. Software product line engineering:
foundations, principles, and techniques. Springer, 2005.

6. A. Safilian, T. Maibaum, and Z. Diskin. The semantics of feature models via formal
languages (extended version). (GSDLab TR 2014-08-02), 08/2014 2014.

7. A. Safilian, T. Maibaum, and Z. Diskin. The semantics of cardinality-based fea-
ture models via formal languages. To appear in proceedings of FM 2015: Formal
Methods, 2015.

8. S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Reverse engineering
feature models. In ICSE 2011, pages 461–470. IEEE, 2011.

9. M. Simos, R. Creps, C. Klingler, and L. Lavine. Software technology for adaptable
reliable systems (stars). organization domain modeling (odm) guidebook, version
1.0. Technical report, DTIC Document, 1995.

10. T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature models. In
Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on,
pages 254–264. IEEE, 2009.

Proceedings of the Doctoral Symposium of Formal Methods 2015

43

Proceedings of the Doctoral Symposium of Formal Methods 2015

44

A Formal Model for the SCJ Level 2 Paradigm

Matt Luckcuck
Department of Computer Science, University of York, UK

ml881@york.ac.uk

1 Introduction

Safety-Critical Java (SCJ) [12] is the product of an international effort to provide
a Java-based language for applications that must be certified using the avionics
standard ED-12C/DO-178C [4] at Level A, which defines software that would
prevent continuous safe flight and landing in the event of failure. To aid certifi-
cation, SCJ is organised into three compliance levels that ascend in complexity
from Level 0 to Level 2.

The SCJ standard does not cover verification techniques. Verification has
been addressed and results obtained for Level 1, but not Level 2. We focus on
providing verification for SCJ Level 2 programs. SCJ Level 2 has received little
attention from practitioners and researchers, even its intended uses are unclear
from the standard, and in [14] we present the first examination of the uses of its
features and present example applications for Level 2.

The SCJ API ensures a hierarchical program structure and supports several
real-time execution abstractions. SCJ programs are centred around missions,
which each contain several real-time tasks that perform a particular function.
Uniquely for SCJ, a Level 2 program may have many concurrent missions, which
allows Level 2 programs to adopt more complex structures than those at the
other two compliance levels. Tasks from any active mission may preempt each
other, based on their priorities; there is no assumption that tasks from a par-
ticular mission have precedence. Level 2 tasks may use all four SCJ execution
patterns: periodic, aperiodic, run-once after a time offset, and run-to-completion.
Finally, Level 2 programs may use the familiar Java suspension features.

Our work makes three contributions to the state of the art on verification of
SCJ Level 2 programs. Firstly, we model the SCJ Level 2 paradigm using the
state-rich process algebra Circus [15]. Our model can be used to identify potential
errors in the programs that it represents. Circus combines Z [10] for modelling
state, CSP [7] for modelling behaviour, and Morgan’s refinement calculus [9].
A Circus program is organised around processes, which may have a state com-
ponent to hold variables and actions to perform behaviours. Communication
between processes is achieved via CSP channels. Our model uses features from
other members of the Circus family. OhCircus [2] introduces a notion of object
orientation and inheritance, and we use features from Circus Time [13] to specify
time budgets and deadlines.

We provide a mechanised translation strategy that enables the automatic
transformation of SCJ Level 2 source code into faithful Circus models. As a
secondary objective, we also provide a strategy for translating our models back
into SCJ programs.

Proceedings of the Doctoral Symposium of Formal Methods 2015

45

Our second contribution rests on our model capturing the API separately
from the program-specific behaviour. Because of this separation we can show
that the SCJ API does not introduce undesirable behaviour, such as deadlock
or livelock, under the circumstances that we capture.

There is a body of previous work involving Circus and SCJ, including a model
of SCJ Level 1 [16] – upon which our work is based. A refinement strategy [3] has
been devised to transform abstract specifications into concrete specifications that
capture the SCJ paradigm. This refinement strategy facilitates the development
of SCJ programs that are correct by construction.

Our final contribution is that our model provides the refinement strategy [3]
with a target for models of SCJ Level 2. While this refinement strategy is out of
scope for our work, our model enables it to consider Level 2 programs.

Previous approaches to ensuring the safety of SCJ programs include using
annotations to provide run-time checks [11] or to specify checkable program con-
straints [6]. RSJ [8] is a tool that explores all possible schedulings of the threads
within an SCJ program to check for scheduling-dependent errors. However, none
of these techniques are specifically aimed at Level 2.

ABS [1] is an executable specification language that has similar capabilities
to Circus. Both ABS and Circus have an object-oriented model that is similar to
Java’s and capture concurrency. However, Circus contains a notion of refinement
that ABS does not. Refinement is important for our third contribution.

In the next section we describe our model of SCJ and what analysis it fa-
cilities. Finally, in Section 3 we summarise our research and contributions, and
describe the further work needed to complete this research.

2 Model and Translation

We capture the paradigm of SCJ Level 2, agnostically of its implementation in
Java, using two components. The framework model captures the behaviour of
the API classes of SCJ and is reused for each program. Conversely, each program
is represented by an application model that captures its particular behaviour.

The framework and application models both contain a process for each of the
SCJ API classes. The framework processes control the program flow and hand off
to their application counterparts wherever the program runs application code,
including where API methods are overridden.

We capture Java exceptions but only when they indicate a misuse of the
SCJ paradigm, never when they indicate a purely Java problem (such as a null

parameter). If the program uses locking or suspension, then we capture this in
extra elements added to the framework model.

The translation strategy that we are developing contains formal rules that
build the specification of a given program. Our work provides the first formal
semantics of SCJ Level 2. As there is nothing else formal to compare our seman-
tics to, we can not consider its soundness, but it will be validated using tools
and case studies.

Proceedings of the Doctoral Symposium of Formal Methods 2015

46

A Circus model checker is in development; in the mean time we translate
our Circus model into CSP to validate our specifications using FDR3 [5]. We
animate its behaviour and compare it to that described in the SCJ standard.
We model check it to identify properties (such as deadlock, livelock, and non-
termination) that represent program errors and SCJ-specific problems, such as
Java exceptions that indicate a misuse of the SCJ paradigm. This also gives us
confidence that our model of the SCJ infrastructure is correct and helps to verify
the SCJ API itself, because we model it separately.

Our approach is limited to capturing the behaviour of SCJ programs. We
do not capture use of resources, in particular memory usage. Further, while we
capture time for the purposes of deadline detection, our models cannot be used
to calculate the worst-case execution time of a program.

We have used FDR3 to show that our model of the SCJ infrastructure is
free from program errors, meaning that if our specification of a program exhibits
these errors, then they must arise from the application model. Further, we have
translated several small example applications into our model, by hand, to show
that our model can capture the SCJ Level 2 paradigm. Using FDR3 we have
proved that these examples do no throw exceptions, are free from deadlock and
livelock, and that they terminate.

3 Summary and Further Work

In summary, we model the paradigm of SCJ Level 2 as a combination of a
framework model, that captures the SCJ API, and an application model, that
captures the behaviour of the program being modelled. Our model of SCJ Level 2
contributes to both top-down development of correct SCJ programs, as a target
for the refinement strategy presented in [3], and to bottom-up development of
correct SCJ programs, as a tool for the identification of program errors. Further,
it can be used to verify the SCJ API because we capture it separately in our
model.

Our framework model and the skeleton processes for the application model
are both complete. We have modelled several small example programs, to show
that we can capture the common features of the SCJ Level 2 paradigm, and
shown that these examples do not exhibit any undesirable properties.

The remaining work is to formalise the translation of a program into our
model. Translation will then be automated using a tool that will take SCJ pro-
grams as an input and output Circus models. We envisage minor restrictions on
the form of the SCJ programs, similar to those presented in [16]; for example,
each SCJ class should be in its own file. Automatic translation not only vali-
dates our model, but also enables the verification of SCJ Level 2 programs, by
allowing a simple translation to our model to enable model checking. More work
on analysing our model is needed and the basic properties we can already prove
will be augmented by properties that capture SCJ exceptions that indicate a
misuse of the paradigm and application-specific properties.

Proceedings of the Doctoral Symposium of Formal Methods 2015

47

Acknowledgements

This work is funded by the hiJaC project, backed by the EPSRC grant EP/H017461/1.
We would like to thank Ana Cavalcanti, Andy Wellings, Frank Zeyda, Alan
Burns, and Thomas Gibson-Robinson.

References

1. Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of executable software models. In:
Formal Methods for Executable Software Models, pp. 1–25. Springer (2014)

2. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes. Soft-
ware & Systems Modeling 4(3), 277–296 (2005)

3. Cavalcanti, A., Wellings, A., Woodcock, J., Wei, K., Zeyda, F.: Safety-critical Java
in Circus. In: Proceedings of the 9th International Workshop on Java Technologies
for Real-Time and Embedded Systems. pp. 20–29. JTRES ’11, ACM, New York,
NY, USA (2011)

4. EUROCAE and RTCA: Software Considerations in Airborne Systems and Equip-
ment Certification. Norm ED-12C, EUROCAE (2012)

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: Failures Diver-
gences Refinement (FDR) Version 3 (2013)

6. Haddad, G., Hussain, F., Leavens, G.T.: The design of SafeJML, a specification
language for SCJ with support for WCET specification. In: Proceedings of the
8th International Workshop on Java Technologies for Real-Time and Embedded
Systems. pp. 155–163. JTRES ’10, ACM, New York, NY, USA (2010)

7. Hoare, C.A.R.: Communicating Sequential Processes.
8. Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive Testing of

Safety-Critical Java. In: Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems. pp. 164–174. JTRES ’10,
ACM, New York, NY, USA (2010)

9. Morgan, C.: Programming from specifications. Prentice-Hall, Inc. (1990)
10. Spivey, J.M.: The Z Notation: A Reference Manual. International Series in Com-

puter Science (1992)
11. Tang, D., Plsek, A., Vitek, J.: Static checking of safety critical java annotations. In:

Proceedings of the 8th International Workshop on Java Technologies for Real-Time
and Embedded Systems. pp. 148–154. ACM, Prague, Czech Republic (2010)

12. The Open Group: Safety-Critical Java Technology Specification. Tech. rep., The
Open Group (27 December 2014)

13. Wei, K., Woodcock, J., Cavalcanti, A.: New circus time. University of York, Tech.
Rep., February (2012)

14. Wellings, A., Luckcuck, M., Cavalcanti, A.: Safety-Critical Java Level 2: Motiva-
tions, Example Applications and Issues. In: Proceedings of the 11th International
Workshop on Java Technologies for Real-time and Embedded Systems. pp. 48–57.
JTRES ’13, ACM, New York, NY, USA (2013)

15. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen, J.P.,
Henson, M.C., Robinson, K. (eds.) ZB 2002:Formal Specification and Development
in Z and B, Lecture Notes in Computer Science, vol. 2272, pp. 184–203. Springer
Berlin Heidelberg (2002)

16. Zeyda, F., Lalkhumsanga, L., Cavalcanti, A., Wellings, A.: Circus Models for
Safety-Critical Java Programs. The Computer Journal (2013)

Proceedings of the Doctoral Symposium of Formal Methods 2015

48

A Code Generator for VDM-RT models

Miran Hasanagić

Department of Engineering, Aarhus University,
Finlandsgade 22, 8200 Aarhus N, Denmark

miran.hasanagic@eng.au.dk

1 Introduction

The research presented in this abstract is part of my PhD: “Tool Automation for Model
Based Design of Cyber Physical Systems”. This research is based on the formal method
Vienna Development Method (VDM) [6, 2], which supports specification, modelling
and analysis of software systems in a discrete time domain. Currently three dialects ex-
ist, VDM-SL, VDM++ and VDM-RT. VDM-SL enables modelling of functional spec-
ification of sequential systems, while VDM++ extends it, and supports object-oriented
modelling by introducing classes [3]. Finally, VDM-RT extends VDM++, and supports
the modelling of distributed real time systems [15].

This research is based on the VDM-RT notation, which has shown to be advan-
tageous when developing Distributed Systems (DSs) [15, 14]. More specifically, this
research focuses on the process of implementing a DS modelled in VDM-RT into a
programming language. The main goal of this work is to automate the implementation
process of a VDM-RT model by developing a Code Generator (CG). This has not been
researched before, and in the current approaches a VDM-RT model is implemented
manually [10].

The main motivation for generating code automatically is that it can reduce the de-
velopment time, even though it may be required to adjust it manually after the code has
been generated. Also a manual implementation may introduce inconsistency between
the formal model and the implemented code. Such a CG may enable the designer to
spend more time in the modelling phase during development, hence increase reliability
without increase in the development time.

2 Problem being addressed

As indicated in the introduction, the problem being addressed is how to automate the
process of implementing a VDM-RT model to a programming language. The CG dis-
cussed here, uses the distribution technology Java Remote Method Invocation (RMI)
[13] in order to implement the distributed aspects of a VDM-RT model. This CG gen-
erates code that supports communication between distributed entities which generate
network communication in a VDM-RT model. Both VDM-RT and Java RMI are pre-
sented briefly below.

As a consequence of the lossness in a VDM-RT model, multiple valid interpre-
tations of the model may exists. However, the interpretation of a VDM-RT model is

Proceedings of the Doctoral Symposium of Formal Methods 2015

49

on purpose deterministic even when modelling concurrency aspects [11]. Due to the
modelling lossness and that the execution of Java code is non-deterministic, a CG may
generate Java code which may not follow the same execution path for each simulation
of the same test case. However, each execution of the generated Java code shall be one
of the possible interpretations of a VDM-RT model.

3 Distributed Systems in VDM-RT

VDM-RT enables the designer to model a DS as a single system during the modelling
phase. As stated above, the VDM-RT notation is an extension to the object-oriented
VDM++ notation. Hence objects are the communicating entities when modelling a DS.
Beside having classes, VDM-RT adds the notion of a system definition. In the system
definition computational elements can be created, called CPUs, and communications
channels between these CPUs, called BUSses. So inside this system definition the dis-
tributed aspects of VDM-RT are introduced.

A DS is modelled by instantiating CPUs, deploying object to each CPU in order
to model its functionality, and finally modelling the system architecture by connection
CPUs using BUSes in order to enable communication. The objects instantiated inside
the system defintion are globally accessible, and each VDM-RT model only has one
system definition. Hence these objects can be used anywhere inside the model. How-
ever, in order for two objects deployed on two different CPUs to communicate, the
CPUs have to be connected by a BUS. It shall be noted that VDM-RT also introduces
the notion of time, but this has currently not been addressed by this research.

The interpretation of a VDM-RT model is initiated from a special virtual CPU, that
is connected to all other CPUs inside the system defintion. This virtual CPU is meant
only be used for modelling the expected environment and storing test results [10].

4 Java RMI

Java RMI enables objects instantiated on different Java Virtual Machines (JVMs) to
communicate transparently. In order for an object to be remotely accessible it has to be
instantiated from a Java class which implements a Java interface that enables Java RMI
communication. This is achieved by having both the class and its corresponding inter-
face extending Java RMI relevant properties as defined by [13]. The methods defined in
the interface become remotely accessible. References to remote objects can be obtained
by using a registration service (server), in which objects can be stored and lookup by a
unique name.

5 Research Outcome

The research outcome is to enable transparent communication between objects in a
VDM-RT model when generated to code by using Java RMI. Additionally, a research
outcome is to identify general solutions, by developing this CG, that can be reused for
other CGs using another technology for enabling network communication.

Proceedings of the Doctoral Symposium of Formal Methods 2015

50

Since both VDM-RT and Java RMI build upon the RMI communication paradigm,
object communicating transparently, Java RMI is a good first choice. Additionally, Java
RMI is chosen in order to use the existing VDM++-to-Java CG [7], which is part of the
Overture platform [9], for generating code for the functionality of a single CPU. This
is possible since the collection of objects deployed to a single CPU can be viewed as
a single VDM++ model, which possibility is depended on objects located on another
CPU. Hence the existing VDM++-to-Java CG can generate the functionality of each
CPU, while the CG presented here enables the network communication between CPUs.

The main objective of this CG is to preserve the semantics in a VDM-RT model
when generating code in order to support network communication. This CG implements
each created CPU in a VDM-RT model as an individual JVM. Every realised CPU gets
its own local system class, which only contains its local and remote objects according
to the VDM-RT model. This solves the problem of how to cope with the challenge that
a VDM-RT model has a single system definition for the whole DS model.

In a VDM-RT model both remote and local objects of a single CPU are the actual
class type. So a difference between a VDM-RT model and Java RMI code, is that a local
object uses the actual class implementation, while a remote object is referenced using
the interface. Hence the CG has to generate a Java class that contains all the function-
ality of a VDM-RT class, and a corresponding Java RMI interface which only contains
the signatures of the public methods of the class. This enables the CG to represent both
an object locally by the actual class, and the object remotely by its interface definition.
However, because VDM-RT does not distinguish between types of local and remote ob-
jects, the CG is required to transforms a local class with the equivalent remote interface
in order to support both local and remote objects to passed as method arguments in the
generated code.

Finally, before the main execution of each CPU can be started, all objects are re-
quired to be instantiated on the correct CPUs, and each CPU has to obtain references
to its remote objects. Hence the CG is required to generate an initialisation mechanism
such as the VDM-RT interpreter has before evaluating the model. Currently, in order to
initialise all objects a registration service that is connected to all CPUs is used, where all
object inside the system defintion in a VDM-RT model are stored and looked up. Ad-
ditionally, since the interpreter starts the evaluation from the virtual CPU, a limitation
is to ensure that the VDM-RT model only is started by objects deployed to real CPUs.
These objects can then be placed inside the entry function of the CPU where they are
deployed in the generated code. More in-detail and technical information about how the
Overture1 VDM++-to-Java CG is extended is described in [5].

6 Expected Contributions

Generating code for a VDM-RT model is a novel area of research, hence the research
of using Java RMI as a distributed technology is a first step of research towards code
generating all aspects of a VDM-RT model. Java can not be used to support real time
on a single CPU, and Java RMI can itself not be used for real time communication.

1www.overturetool.org

Proceedings of the Doctoral Symposium of Formal Methods 2015

51

However, it provides some solutions of implementing the distributed aspects of a VDM-
RT model that can be generalised in order to be reused when enabling distribution by
other technologies using RMI, such as CORBA [12].

This research helps additionally understanding the limitations of a VDM-RT model
when it comes to an actual implementation of a modelled DS. It can support to pro-
pose extensions and identify a subset of the VDM-RT language that enables full code
generation.

7 Related Research

Generating code for the distributed aspects of VDM-RT has not been researched before,
so currently there exists no related work to the problem being addressed in the research
presented here. There exist, however, CGs for VDM++ as described in [7, 8].

Code generation in order to support real time tasks is discussed in [1], which can be
relevant when the real time aspects of a VDM-RT model have to be supported. Addi-
tionally, [4] presents how code can be generated for Event-B models. However, for the
research presented in this abstract the focus mainly has been to illustrated that the dis-
tributed aspects can be supported by a code generator, while preserving the semantics
of VDM-RT.

8 Current Progress and Publications

The CG presented here has been validated by a case study. Currently this CG does not
support of all aspects of a VDM-RT model, such as time, periodic threads, CPU speed
and BUS bandwith. For this reason, the current CG is limited to preserving operation
ordering within a CPU. This CG is, however, used in order to show that a VDM-RT
model can be code generated. Future research will address how to incorporate timing
aspects and use other distribution technologies in combination with other programming
languages inside the EU INTO-CPS project2.

Currently the only relevant publication of this author for this research area is [5],
which is submitted for the Overture Workshop at FM15. The work presented here is
partially supported by the INTO-CPS project funded by the European Commission’s
Horizon 2020 programme under grant agreement number 664047.

References

1. Amnell, T., Fersman, E., Petterson, P., Sun, H., Yi, W.: Code synthesis for timed automata.
Nordic Journal of Computing (2003)

2. Bjørner, D.: Pinnacles of software engineering: 25 years of formal methods. Annals of Soft-
ware Engineering 10, 11–66 (2000)

3. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://overturetool.org/
publications/books/vdoos/

2www.into-cps.au.dk

Proceedings of the Doctoral Symposium of Formal Methods 2015

52

4. Furst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazki, K.: Code generation for
event-b

5. Hasanagić, M., Larsen, P.G., Jørgensen, P.W.V.: Generating java rmi code for the distributed
aspects of vdm-rt models. Submitted to the Overture Workshop at FM15 (2015)

6. Jones, C.B.: Scientific Decisions which Characterize VDM. In: Wing, J., Woodcock, J.,
Davies, J. (eds.) FM’99 - Formal Methods. pp. 28–47. Springer-Verlag (1999), lecture Notes
in Computer Science 1708

7. Jørgensen, P.W., Couto, L.D., Larsen, M.: A Code Generation Platform for VDM. In: The
Overture 2014 workshop (June 2014)

8. Larsen, P.G.: Ten Years of Historical Development: “Bootstrapping” VDMTools. Journal of
Universal Computer Science 7(8), 692–709 (2001)

9. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. SIGSOFT Softw. Eng. Notes 35(1), 1–6 (January
2010), http://doi.acm.org/10.1145/1668862.1668864

10. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-
Time Embedded Systems using VDM. Intl. Journal of Software and Informatics 3(2-3) (Oc-
tober 2009)

11. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating A Distributed
real time system using VDM. In: Qin, S., Qiu, Z. (eds.) Proceedings of the 13th international
conference on Formal methods and software engineering. Lecture Notes in Computer Sci-
ence, vol. 6991, pp. 179–194. Springer-Verlag, Berlin, Heidelberg (October 2011), http:
//dl.acm.org/citation.cfm?id=2075089.2075107, ISBN 978-3-642-24558-
9

12. OMG: The Common Object Request Broker: Core Specification. (November 2002)
13. Sun: Java Remote Method Invocation Specification (2000)
14. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.

Ph.D. thesis, Radboud University Nijmegen (2009)
15. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-

Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085, Springer-Verlag (2006)

Proceedings of the Doctoral Symposium of Formal Methods 2015

53

Proceedings of the Doctoral Symposium of Formal Methods 2015

54

Privacy-Preserving Social Networks

Raúl Pardo

Dept. of Computer Science and Engineering,
Chalmers University of Technology, Sweden.

pardo@chalmers.se

1 Outline of the problem

One of the aims of social networks (SNs) is to be flexible in the way one shares
information, being as permissive as possible in how people communicate and
disseminate information. While preserving the spirit of SNs, users would like to
be sure that their privacy is not compromised. Though limiting the capability
of users in what concerns what they can share or not might be in the interest of
service providers in general, and in particular of SNs, we believe citizens should
be in power to control and decide on how much information to make public.
One way to do so is by providing users with means to define their own privacy
policies and give guarantees that they will be respected. Privacy in SNs may be
compromised in different ways: from direct observation of what is posted (seen by
non-allowed agents), by inferring properties of data (metadata privacy leakages),
indirectly from the topology of the SN (e.g., knowing who our friends are), to
more elaborate intentional attackers such as sniffers or harvesters [6]. Among
others, one of the origins of these attacks comes from their privacy enforcement
mechanism, the so called Relationship-Based Access Control (ReBAC) [5].

We aim for developing a privacy enforcement mechanism which offers social
network users the possibility of expressing finer-grained privacy policies, enabling
them to deal with (certain kinds of) implicit disclosure of sensitive information.
As a first step towards that goal, we have developed the privacy policy framework
PPF for social networks [7], which is briefly described in next section.

2 The Privacy Policy Framework PPF
The privacy policy framework PPF for social networks [7] consists of:
A social network model. SN is a social graph, a graph whose nodes represent

users, and edges represent different kind of relationships between users. The
graph is enriched with information on the knowledge the users of the social
network have, and what they are permitted to do.

A knowledge-based logic. KBLSN is an epistemic-deontic logic which pro-
vides the possibility to reason about what the agents know and what they
are allowed to do. The logic allows us not only to access and reason about the
explicit knowledge of an agent, but also about implicit knowledge (through
inferences).

Proceedings of the Doctoral Symposium of Formal Methods 2015

55

A formal privacy policy language. PPLSN is a language for writing pri-
vacy policies for each individual user.
Besides, the framework also comes with a satisfaction relation defined for

the logic KBLSN , and a conformance relation defined for the policy language
PPLSN .

The framework may be tailored by providing suitable instantiations of the
different relationships, the events, the propositions representing what is to be
known, and the additional facts or rules a particular social network should sat-
isfy. In order to show how PPF can be used, we have instantiated the privacy
policies of Facebook and Twitter [7], which are two of the most used social net-
works nowadays. For instance, one of Facebook’s privacy policies is responsible
for setting the audience of a post, where the user can choose among ‘Friends’,
‘Only me’ and ‘Custom’. In PPFFacebook it would be split in 3 policies. In the
mentioned instantiation if u wants the audience of her posts to be her Friends,
it would be written as follows:

J¬SAg\friends(u)\{u}u.post
j
nKu

where SGφ is a formula stating “somebody in the group G knows φ”, Ag is the
set of all the agents in SN , u, j ∈ Ag, n ∈ N, postjn represents post n in j’s
timeline and friends(u) is an function which returns all the friends of u.

In PPF it is possible to write more expressive policies: we can choose any
attribute we like and define an audience for it. For example, we can write the
following privacy policy:

Only my friends can know the posts I liked

which would be written in PPLSN as follows

J¬SAg\friends(u)\{u}u.likepostjnKu.

As we mentioned before PPF is an generic framework, therefore we could
combine instantiations of two (or more) different social networks in one. This is a
very useful and innovative feature, since currently it is becoming more common
to connect several accounts from different social networks and share information
between them. As a final example of the use of our framework, we present below
an example of a privacy policy concerning the combination of PPFTwitter and
PPFFacebook [7]. The following privacy policy:

Only my friends in Facebook who are following me in Twitter can know my
location

will be written in our formalism as

J¬SAg\(friends(u)∩Followers(u))\{u} u.locationKu.

In PPF , we do not follow the traditional semantics for epistemic logic [4].
It is because the traditional approach is based on modelling the uncertainty

Proceedings of the Doctoral Symposium of Formal Methods 2015

56

of the agents. If one try to model the uncertainty of the millions of users of a
social network, it would require a gigantic state space [9], [8]. Instead we chose
to explicitly model what the agents know, which considerably reduces the state
space required to model the users’ knowledge [7] and leads to a more practical
approach.

As we mentioned in Section 1, SNs implement the access control model Re-
BAC. Fong et al. introduced a formalism, which aimed at providing a better un-
derstanding of ReBAC [5]. In ReBAC users define an audience to their resources
based on relationships, e.g. “My posts can be accessed only by my friends”. How-
ever, it does not appropriately protect against implicit disclosure of information.
For instance, imagine that Alice defines the policy “Nobody can know my loca-
tion”. If now Bob posts the message “I’m in Sweden with Alice”, Alice policy
would not be enforced, since the message is a resource of Bob. In PPF , Alice’s
location would be protected independently of who is disclosing the information.
The main advantage of ReBAC is its efficiency, since it only requires to check
whether the user trying to access the resource is part of the audience. Fong
et al. also defined a language based on Hybrid logic to express privacy policy
in ReBAC [3]. A comparison between the expressiveness of this language and
PPLSN is part of our future work.

3 Current and Future Work

PPF offers a framework in which, given a ”static” SN we can check if a set
of privacy policies is conformance with it. However social networks evolve as
their users execute events. A social network user can make new friends, post
new pictures, share her location, etc.

Currently we are working on the dynamic version of PPF , PPFD. In the
dynamic framework we add to PPF the definition of a set of inference rules
which determine how the knowledge and the permissions of the agents evolve
depending on the events they execute. We define 4 types of rules:

– Knowledge-based. These rules describe how the knowledge and the permission
change when executing the rule.

– Social topology. These rules modify the social topology of the SN , i.e. the
users and their relationships. For instance, adding new users, relationships
between them, etc.

– Policy. These rules allow for the modification of the set of privacy policies
of the agents.

– Hybrid. These are special rules, in which it is allowed to combine elements
from the three previous types of rules.

The addition of the dynamic this aspect leads to new and more interesting
results. Given a set of inference rules of an instantiation and a set of privacy
policies, we can formally prove that the set of rules is privacy-preserving with
respect to the set of privacy policies (i.e. all privacy policies are preserved under
any possible event of the social network). We have written the rules for Twitter

Proceedings of the Doctoral Symposium of Formal Methods 2015

57

and prove that it preserves privacy with respect to the set of privacy policies
defined in [7] for PPFTwitter. Moreover, we proved that Twitter and Facebook
would not handle the addition of some natural privacy policies. Specifically, we
proved that adding the policy “It is not permitted that I am mentioned in a tweet
which contains a location” would not be protected by the current behaviour of
Twitter. Besides, we partially defined the set of rules for Facebook and proved
that if we add the policy “I can only be tagged in a picture if I have approved
it” it would not be preserved.

Our next step is extending PPFD with real time policies. As I mentioned
we would like to provide the user with fine-grained control when protecting her
information. Real time policies will allow users to specify time frames when
the information is available. For example, a privacy concern user would like to
enforce the following policy “My boss can never know my location after 20:00”.

As mid-term goal, we aim at developing run-time monitoring techniques to
enforce that privacy is preserved online, both for evolution concerning the net-
work as well as the policies themselves. Obviously, a centralised version of the
monitor would not be practical, so we aim at implementing a distributed mon-
itor. We have already implemented a very limited prototype of PPFD in the
open source social network Diaspora* [1][2]. However, we planning to implement
the full policy framework and the run-time enforcement mechanism.

References

1. Diaspora*. https://joindiaspora.com/. Accessed: 2015-05-17.
2. PPF diaspora*. https://github.com/raulpardo/ppf-diaspora. Accessed: 2015-04-

12.
3. G. Bruns, P. W. Fong, I. Siahaan, and M. Huth. Relationship-based access control:

its expression and enforcement through hybrid logic. In CODASPY’12, pages 117–
124. ACM, 2012.

4. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about knowledge,
volume 4. MIT press Cambridge, 1995.

5. P. W. Fong. Relationship-based access control: Protection model and policy lan-
guage. In CODASPY’11, pages 191–202. ACM, 2011.

6. B. Greschbach, G. Kreitz, and S. Buchegger. The devil is in the metadata - new
privacy challenges in decentralised online social networks. In PerCom Workshops,
pages 333–339. IEEE, 2012.

7. R. Pardo and G. Schneider. A formal privacy policy framework for social networks.
In SEFM’14, volume 8702 of LNCS, pages 378–392. Springer, 2014.

8. J. Ruan and M. Thielscher. A logic for knowledge flow in social networks. In AI
2011: Advances in Artificial Intelligence, pages 511–520. Springer, 2011.

9. J. Seligman, F. Liu, and P. Girard. Facebook and the epistemic logic of friendship.
In TARK’13, 2013.

Proceedings of the Doctoral Symposium of Formal Methods 2015

58

Proceedings of the Doctoral Symposium of Formal Methods 2015

Index of Authors

Benmoussa, Mohamed Mahdi, 9

de Gouw, Stijn, 1
Dihego, José, 27
Du, Xiaoning, 21

Hasanagic, Miran, 49

Lorber Florian, 15

Luckcuck, Matthew, 45

Müller, Andreas, 33

Pardo, Raúl, 55

Safilian, Aliakbar, 39
Schwammberger, Maike, 3

